|
--- |
|
datasets: |
|
- bigscience/xP3mt |
|
- mc4 |
|
license: apache-2.0 |
|
language: |
|
- af |
|
- am |
|
- ar |
|
- az |
|
- be |
|
- bg |
|
- bn |
|
- ca |
|
- ceb |
|
- co |
|
- cs |
|
- cy |
|
- da |
|
- de |
|
- el |
|
- en |
|
- eo |
|
- es |
|
- et |
|
- eu |
|
- fa |
|
- fi |
|
- fil |
|
- fr |
|
- fy |
|
- ga |
|
- gd |
|
- gl |
|
- gu |
|
- ha |
|
- haw |
|
- hi |
|
- hmn |
|
- ht |
|
- hu |
|
- hy |
|
- ig |
|
- is |
|
- it |
|
- iw |
|
- ja |
|
- jv |
|
- ka |
|
- kk |
|
- km |
|
- kn |
|
- ko |
|
- ku |
|
- ky |
|
- la |
|
- lb |
|
- lo |
|
- lt |
|
- lv |
|
- mg |
|
- mi |
|
- mk |
|
- ml |
|
- mn |
|
- mr |
|
- ms |
|
- mt |
|
- my |
|
- ne |
|
- nl |
|
- 'no' |
|
- ny |
|
- pa |
|
- pl |
|
- ps |
|
- pt |
|
- ro |
|
- ru |
|
- sd |
|
- si |
|
- sk |
|
- sl |
|
- sm |
|
- sn |
|
- so |
|
- sq |
|
- sr |
|
- st |
|
- su |
|
- sv |
|
- sw |
|
- ta |
|
- te |
|
- tg |
|
- th |
|
- tr |
|
- uk |
|
- und |
|
- ur |
|
- uz |
|
- vi |
|
- xh |
|
- yi |
|
- yo |
|
- zh |
|
- zu |
|
tags: |
|
- text2text-generation |
|
- llama-cpp |
|
- gguf-my-repo |
|
widget: |
|
- text: Life is beautiful! Translate to Mongolian. |
|
example_title: mn-en translation |
|
- text: Le mot japonais «憂鬱» veut dire quoi en Odia? |
|
example_title: jp-or-fr translation |
|
- text: Stell mir eine schwierige Quiz Frage bei der es um Astronomie geht. Bitte |
|
stell die Frage auf Norwegisch. |
|
example_title: de-nb quiz |
|
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。Would you rate the previous |
|
review as positive, neutral or negative? |
|
example_title: zh-en sentiment |
|
- text: 一个传奇的开端,一个不灭的神话,这不仅仅是一部电影,而是作为一个走进新时代的标签,永远彪炳史册。你认为这句话的立场是赞扬、中立还是批评? |
|
example_title: zh-zh sentiment |
|
- text: Suggest at least five related search terms to "Mạng neural nhân tạo". |
|
example_title: vi-en query |
|
- text: Proposez au moins cinq mots clés concernant «Réseau de neurones artificiels». |
|
example_title: fr-fr query |
|
- text: Explain in a sentence in Telugu what is backpropagation in neural networks. |
|
example_title: te-en qa |
|
- text: Why is the sky blue? |
|
example_title: en-en qa |
|
- text: 'Write a fairy tale about a troll saving a princess from a dangerous dragon. |
|
The fairy tale is a masterpiece that has achieved praise worldwide and its moral |
|
is "Heroes Come in All Shapes and Sizes". Story (in Spanish):' |
|
example_title: es-en fable |
|
- text: 'Write a fable about wood elves living in a forest that is suddenly invaded |
|
by ogres. The fable is a masterpiece that has achieved praise worldwide and its |
|
moral is "Violence is the last refuge of the incompetent". Fable (in Hindi):' |
|
example_title: hi-en fable |
|
pipeline_tag: text2text-generation |
|
base_model: bigscience/mt0-xxl-mt |
|
model-index: |
|
- name: mt0-xxl-mt |
|
results: |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: Winogrande XL (xl) |
|
type: winogrande |
|
config: xl |
|
split: validation |
|
revision: a80f460359d1e9a67c006011c94de42a8759430c |
|
metrics: |
|
- type: Accuracy |
|
value: 62.67 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (en) |
|
type: Muennighoff/xwinograd |
|
config: en |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 83.31 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (fr) |
|
type: Muennighoff/xwinograd |
|
config: fr |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 78.31 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (jp) |
|
type: Muennighoff/xwinograd |
|
config: jp |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 80.19 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (pt) |
|
type: Muennighoff/xwinograd |
|
config: pt |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 80.99 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (ru) |
|
type: Muennighoff/xwinograd |
|
config: ru |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 79.05 |
|
- task: |
|
type: Coreference resolution |
|
dataset: |
|
name: XWinograd (zh) |
|
type: Muennighoff/xwinograd |
|
config: zh |
|
split: test |
|
revision: 9dd5ea5505fad86b7bedad667955577815300cee |
|
metrics: |
|
- type: Accuracy |
|
value: 82.34 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: ANLI (r1) |
|
type: anli |
|
config: r1 |
|
split: validation |
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
metrics: |
|
- type: Accuracy |
|
value: 49.5 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: ANLI (r2) |
|
type: anli |
|
config: r2 |
|
split: validation |
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
metrics: |
|
- type: Accuracy |
|
value: 42 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: ANLI (r3) |
|
type: anli |
|
config: r3 |
|
split: validation |
|
revision: 9dbd830a06fea8b1c49d6e5ef2004a08d9f45094 |
|
metrics: |
|
- type: Accuracy |
|
value: 48.17 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: SuperGLUE (cb) |
|
type: super_glue |
|
config: cb |
|
split: validation |
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
metrics: |
|
- type: Accuracy |
|
value: 87.5 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: SuperGLUE (rte) |
|
type: super_glue |
|
config: rte |
|
split: validation |
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
metrics: |
|
- type: Accuracy |
|
value: 84.84 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (ar) |
|
type: xnli |
|
config: ar |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 58.03 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (bg) |
|
type: xnli |
|
config: bg |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 59.92 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (de) |
|
type: xnli |
|
config: de |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 60.16 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (el) |
|
type: xnli |
|
config: el |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 59.2 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (en) |
|
type: xnli |
|
config: en |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 62.25 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (es) |
|
type: xnli |
|
config: es |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 60.92 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (fr) |
|
type: xnli |
|
config: fr |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 59.88 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (hi) |
|
type: xnli |
|
config: hi |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 57.47 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (ru) |
|
type: xnli |
|
config: ru |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 58.67 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (sw) |
|
type: xnli |
|
config: sw |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 56.79 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (th) |
|
type: xnli |
|
config: th |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 58.03 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (tr) |
|
type: xnli |
|
config: tr |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 57.67 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (ur) |
|
type: xnli |
|
config: ur |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 55.98 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (vi) |
|
type: xnli |
|
config: vi |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 58.92 |
|
- task: |
|
type: Natural language inference |
|
dataset: |
|
name: XNLI (zh) |
|
type: xnli |
|
config: zh |
|
split: validation |
|
revision: a5a45e4ff92d5d3f34de70aaf4b72c3bdf9f7f16 |
|
metrics: |
|
- type: Accuracy |
|
value: 58.71 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: StoryCloze (2016) |
|
type: story_cloze |
|
config: '2016' |
|
split: validation |
|
revision: e724c6f8cdf7c7a2fb229d862226e15b023ee4db |
|
metrics: |
|
- type: Accuracy |
|
value: 94.66 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: SuperGLUE (copa) |
|
type: super_glue |
|
config: copa |
|
split: validation |
|
revision: 9e12063561e7e6c79099feb6d5a493142584e9e2 |
|
metrics: |
|
- type: Accuracy |
|
value: 88 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (et) |
|
type: xcopa |
|
config: et |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 81 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (ht) |
|
type: xcopa |
|
config: ht |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 79 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (id) |
|
type: xcopa |
|
config: id |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 90 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (it) |
|
type: xcopa |
|
config: it |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 88 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (qu) |
|
type: xcopa |
|
config: qu |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 56 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (sw) |
|
type: xcopa |
|
config: sw |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 81 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (ta) |
|
type: xcopa |
|
config: ta |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 81 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (th) |
|
type: xcopa |
|
config: th |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 76 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (tr) |
|
type: xcopa |
|
config: tr |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 76 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (vi) |
|
type: xcopa |
|
config: vi |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 85 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XCOPA (zh) |
|
type: xcopa |
|
config: zh |
|
split: validation |
|
revision: 37f73c60fb123111fa5af5f9b705d0b3747fd187 |
|
metrics: |
|
- type: Accuracy |
|
value: 87 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (ar) |
|
type: Muennighoff/xstory_cloze |
|
config: ar |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 91 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (es) |
|
type: Muennighoff/xstory_cloze |
|
config: es |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 93.38 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (eu) |
|
type: Muennighoff/xstory_cloze |
|
config: eu |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 91.13 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (hi) |
|
type: Muennighoff/xstory_cloze |
|
config: hi |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 90.73 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (id) |
|
type: Muennighoff/xstory_cloze |
|
config: id |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 93.05 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (my) |
|
type: Muennighoff/xstory_cloze |
|
config: my |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 86.7 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (ru) |
|
type: Muennighoff/xstory_cloze |
|
config: ru |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 91.66 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (sw) |
|
type: Muennighoff/xstory_cloze |
|
config: sw |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 89.61 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (te) |
|
type: Muennighoff/xstory_cloze |
|
config: te |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 90.4 |
|
- task: |
|
type: Sentence completion |
|
dataset: |
|
name: XStoryCloze (zh) |
|
type: Muennighoff/xstory_cloze |
|
config: zh |
|
split: validation |
|
revision: 8bb76e594b68147f1a430e86829d07189622b90d |
|
metrics: |
|
- type: Accuracy |
|
value: 93.05 |
|
--- |
|
|
|
# Markobes/mt0-xxl-mt-Q5_K_M-GGUF |
|
This model was converted to GGUF format from [`bigscience/mt0-xxl-mt`](https://huggingface.co/bigscience/mt0-xxl-mt) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/bigscience/mt0-xxl-mt) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Markobes/mt0-xxl-mt-Q5_K_M-GGUF --hf-file mt0-xxl-mt-q5_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Markobes/mt0-xxl-mt-Q5_K_M-GGUF --hf-file mt0-xxl-mt-q5_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Markobes/mt0-xxl-mt-Q5_K_M-GGUF --hf-file mt0-xxl-mt-q5_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Markobes/mt0-xxl-mt-Q5_K_M-GGUF --hf-file mt0-xxl-mt-q5_k_m.gguf -c 2048 |
|
``` |
|
|