Neo-GPT-Title-Generation-Electric-Car
Title generator based on Neo-GPT 125M fine-tuned on a dataset of 39k url's title. All urls are selected on the TOP 10 google on a list of Keywords about "Electric car" - "Electric car for sale".
Pipeline example
import pandas as pd
from transformers import AutoModelForMaskedLM
from transformers import GPT2Tokenizer, TrainingArguments, AutoModelForCausalLM, AutoConfig
model = AutoModelForCausalLM.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car')
tokenizer = GPT2Tokenizer.from_pretrained('Martian/Neo-GPT-Title-Generation-Electric-Car', bos_token='<|startoftext|>',
eos_token='<|endoftext|>', pad_token='<|pad|>')
prompt = "<|startoftext|> Electric car"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
gen_tokens = model.generate(input_ids, do_sample=True, top_k=100, min_length = 30, max_length=150, top_p=0.90, num_return_sequences=20, skip_special_tokens=True)
list_title_gen = []
for i, sample_output in enumerate(gen_tokens):
title = tokenizer.decode(sample_output, skip_special_tokens=True)
list_title_gen.append(title)
for i in list_title_gen:
try:
list_title_gen[list_title_gen.index(i)] = i.split(' | ')[0]
except:
continue
try:
list_title_gen[list_title_gen.index(i)] = i.split(' - ')[0]
except:
continue
try:
list_title_gen[list_title_gen.index(i)] = i.split(' — ')[0]
except:
continue
list_title_gen = [sub.replace('�', ' ').replace('\\r',' ').replace('\
',' ').replace('\\t', ' ').replace('\\xa0', '') for sub in list_title_gen]
list_title_gen = [sub if sub != '<|startoftext|> Electric car' else '' for sub in list_title_gen]
for i in list_title_gen:
print(i)
Todo
- Improve the quality of the training sample
- Add more data
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.