asrtbsc_phi-freezed-best
ASR transcripts multi-label DAC
Model description
Backbone: Phi 3 mini
Pooling: Weighted mean
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween
Training and evaluation data
Trained on ASR transcripts.
Evaluated on ground truth (GT) and normalized Whisper small transcripts (E2E).
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 35
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Dataset used to train Masioki/asrtbsc_phi-freezed-best
Evaluation results
- F1 macro E2E on asapp/slue-phase-2self-reportedTBA
- F1 macro GT on asapp/slue-phase-2self-reportedTBA