metadata
tags:
- generated_from_trainer
model-index:
- name: gttbsc_phi-freezed-best
results:
- task:
type: dialogue act classification
dataset:
name: asapp/slue-phase-2
type: hvb
metrics:
- name: F1 macro E2E
type: F1 macro
value: 65.66
- name: F1 macro GT
type: F1 macro
value: 69.97
datasets:
- asapp/slue-phase-2
language:
- en
metrics:
- f1-macro
gttbsc_phi-freezed-best
Ground truth text based multi-label DAC
Model description
Backbone: Phi 3 mini
Pooling: Weighted mean pooling
Multi-label classification head: 2 dense layers with two dropouts 0.3 and Tanh activation inbetween
Training and evaluation data
Trained on ground truth.
Evaluated on ground truth (GT) and normalized Whisper small transcripts (E2E).
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1