Yakut-ASR

This model is a fine-tuned version of facebook/mms-1b-all on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2140
  • Wer: 0.2772

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.0192 0.2132 100 4.4580 0.9999
3.5904 0.4264 200 3.1478 1.0
2.5173 0.6397 300 0.3987 0.4625
0.2948 0.8529 400 0.2442 0.3075
0.2407 1.0661 500 0.2367 0.3170
0.2278 1.2793 600 0.2280 0.2914
0.2279 1.4925 700 0.2341 0.2963
0.2097 1.7058 800 0.2303 0.3138
0.2317 1.9190 900 0.2253 0.2889
0.1898 2.1322 1000 0.2187 0.2795
0.1925 2.3454 1100 0.2262 0.2951
0.211 2.5586 1200 0.2205 0.2909
0.1942 2.7719 1300 0.2192 0.2792
0.169 2.9851 1400 0.2213 0.2835
0.178 3.1983 1500 0.2148 0.2795
0.1862 3.4115 1600 0.2145 0.2803
0.1896 3.6247 1700 0.2154 0.2788
0.1813 3.8380 1800 0.2140 0.2772

Framework versions

  • Transformers 4.49.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
68
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MatricariaV/Yakut-ASR

Finetuned
(258)
this model