|
--- |
|
license: mit |
|
datasets: |
|
- openslr/librispeech_asr |
|
language: |
|
- en |
|
pipeline_tag: automatic-speech-recognition |
|
--- |
|
|
|
# Splitformer |
|
|
|
<div align="center" style="line-height: 1;"> |
|
<a href="https://github.com/augustgw/early-exit-transformer" target="_blank" style="margin: 2px;"> |
|
<img alt="GitHub" src="https://img.shields.io/badge/GitHub-Splitformer-181717?logo=github&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
<a href="https://www.arxiv.org/abs/2506.18035" target="_blank" style="margin: 2px;"> |
|
<img alt="arXiv" src="https://img.shields.io/badge/arXiv-2506.18035-B31B1B?logo=arxiv&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
|
|
## 1. Overview |
|
|
|
**Splitformer** is a 36.7M parameters Conformer-based ASR model trained from scratch on 1000 hours of the **LibriSpeech dataset** with an **early‐exit objective**. |
|
|
|
This architecture introduces **parallel downsampling layers** before the first and last exits to improve performance with minimal extra overhead, while retaining inference speed. |
|
|
|
Our code for training and inference is available on our [GitHub](https://github.com/augustgw/early-exit-transformer) repository. |
|
|
|
### 2. Results on LibriSpeech |
|
|
|
<table> |
|
<thead> |
|
<tr> |
|
<th rowspan="2">Layer</th> |
|
<th colspan="2">EE-baseline (31.5M)</th> |
|
<th colspan="2">Splitformer (36.7M)</th> |
|
<th colspan="2">Wav2Vec2 (94.0M)</th> |
|
<th colspan="2">WavLM (94.7M)</th> |
|
</tr> |
|
<tr> |
|
<th>test-clean</th> |
|
<th>test-other</th> |
|
<th>test-clean</th> |
|
<th>test-other</th> |
|
<th>test-clean</th> |
|
<th>test-other</th> |
|
<th>test-clean</th> |
|
<th>test-other</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td>2</td> |
|
<td>31.0</td> |
|
<td>51.0</td> |
|
<td>28.1</td> |
|
<td>48.3</td> |
|
<td>33.7</td> |
|
<td>56.0</td> |
|
<td>28.0</td> |
|
<td>48.5</td> |
|
</tr> |
|
<tr> |
|
<td>4</td> |
|
<td>11.7</td> |
|
<td>27.8</td> |
|
<td>10.8</td> |
|
<td>26.4</td> |
|
<td>17.4</td> |
|
<td>36.7</td> |
|
<td>13.9</td> |
|
<td>27.3</td> |
|
</tr> |
|
<tr> |
|
<td>6</td> |
|
<td>7.1</td> |
|
<td>19.8</td> |
|
<td>6.7</td> |
|
<td>19.2</td> |
|
<td>9.6</td> |
|
<td>23.7</td> |
|
<td>8.7</td> |
|
<td>18.4</td> |
|
</tr> |
|
<tr> |
|
<td>8</td> |
|
<td>5.8</td> |
|
<td>16.6</td> |
|
<td>5.5</td> |
|
<td>16.3</td> |
|
<td>5.8</td> |
|
<td>15.9</td> |
|
<td>4.8</td> |
|
<td>12.4</td> |
|
</tr> |
|
<tr> |
|
<td>10</td> |
|
<td>5.3</td> |
|
<td>15.3</td> |
|
<td>5.1</td> |
|
<td>15.1</td> |
|
<td>4.5</td> |
|
<td>12.6</td> |
|
<td>4.0</td> |
|
<td>9.5</td> |
|
</tr> |
|
<tr> |
|
<td>12</td> |
|
<td>5.1</td> |
|
<td>14.8</td> |
|
<td>4.8</td> |
|
<td>14.7</td> |
|
<td>4.3</td> |
|
<td>12.2</td> |
|
<td>3.6</td> |
|
<td>8.8</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
## 3. Citation |
|
|
|
```bibtex |
|
@misc{lasbordes2025splitformer, |
|
title={Splitformer: An improved early-exit architecture for automatic speech recognition on edge devices}, |
|
author={Maxence Lasbordes, Daniele Falavigna and Alessio Brutti}, |
|
year={2025}, |
|
note={Proc. of EUSIPCO 2025}, |
|
} |
|
|