Maxnotmarx/diaster_detection_model
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.1107
- Train Accuracy: 0.9695
- Epoch: 7
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Epoch |
---|---|---|
0.4378 | 0.8814 | 0 |
0.3348 | 0.9232 | 1 |
0.2532 | 0.9518 | 2 |
0.1790 | 0.9639 | 3 |
0.1294 | 0.9695 | 4 |
0.1132 | 0.9696 | 5 |
0.1130 | 0.9695 | 6 |
0.1107 | 0.9695 | 7 |
Framework versions
- Transformers 4.44.0
- TensorFlow 2.16.1
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1