Edit model card

Maxnotmarx/diaster_detection_model

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1107
  • Train Accuracy: 0.9695
  • Epoch: 7

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 2375, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Epoch
0.4378 0.8814 0
0.3348 0.9232 1
0.2532 0.9518 2
0.1790 0.9639 3
0.1294 0.9695 4
0.1132 0.9696 5
0.1130 0.9695 6
0.1107 0.9695 7

Framework versions

  • Transformers 4.44.0
  • TensorFlow 2.16.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Maxnotmarx/diaster_detection_model

Finetuned
(59)
this model