ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k9_task5_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7778
- Qwk: 0.5588
- Mse: 0.7778
- Rmse: 0.8819
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0833 | 2 | 4.1156 | 0.0024 | 4.1156 | 2.0287 |
No log | 0.1667 | 4 | 1.9847 | 0.0633 | 1.9847 | 1.4088 |
No log | 0.25 | 6 | 1.2650 | 0.0232 | 1.2650 | 1.1247 |
No log | 0.3333 | 8 | 1.1427 | 0.1296 | 1.1427 | 1.0690 |
No log | 0.4167 | 10 | 1.4212 | 0.0273 | 1.4212 | 1.1921 |
No log | 0.5 | 12 | 1.4855 | 0.1438 | 1.4855 | 1.2188 |
No log | 0.5833 | 14 | 1.3519 | 0.0170 | 1.3519 | 1.1627 |
No log | 0.6667 | 16 | 1.3687 | 0.0712 | 1.3687 | 1.1699 |
No log | 0.75 | 18 | 1.0846 | 0.2539 | 1.0846 | 1.0414 |
No log | 0.8333 | 20 | 1.0034 | 0.2035 | 1.0034 | 1.0017 |
No log | 0.9167 | 22 | 1.1764 | 0.0427 | 1.1764 | 1.0846 |
No log | 1.0 | 24 | 1.6202 | 0.0399 | 1.6202 | 1.2729 |
No log | 1.0833 | 26 | 1.7089 | 0.0651 | 1.7089 | 1.3073 |
No log | 1.1667 | 28 | 1.2862 | -0.0296 | 1.2862 | 1.1341 |
No log | 1.25 | 30 | 1.0896 | 0.2734 | 1.0896 | 1.0438 |
No log | 1.3333 | 32 | 1.1734 | 0.2150 | 1.1734 | 1.0833 |
No log | 1.4167 | 34 | 1.1268 | 0.1910 | 1.1268 | 1.0615 |
No log | 1.5 | 36 | 1.1471 | 0.1910 | 1.1471 | 1.0710 |
No log | 1.5833 | 38 | 1.2530 | 0.0380 | 1.2530 | 1.1194 |
No log | 1.6667 | 40 | 1.1814 | 0.1910 | 1.1814 | 1.0869 |
No log | 1.75 | 42 | 1.1412 | 0.2150 | 1.1412 | 1.0683 |
No log | 1.8333 | 44 | 1.1151 | 0.2150 | 1.1151 | 1.0560 |
No log | 1.9167 | 46 | 1.1561 | 0.2295 | 1.1561 | 1.0752 |
No log | 2.0 | 48 | 1.1455 | 0.2150 | 1.1455 | 1.0703 |
No log | 2.0833 | 50 | 1.1505 | 0.2150 | 1.1505 | 1.0726 |
No log | 2.1667 | 52 | 1.0827 | 0.1979 | 1.0827 | 1.0405 |
No log | 2.25 | 54 | 1.0039 | 0.2416 | 1.0039 | 1.0019 |
No log | 2.3333 | 56 | 0.9863 | 0.2068 | 0.9863 | 0.9931 |
No log | 2.4167 | 58 | 1.0020 | 0.2441 | 1.0020 | 1.0010 |
No log | 2.5 | 60 | 1.1079 | 0.2175 | 1.1079 | 1.0526 |
No log | 2.5833 | 62 | 1.1474 | 0.2143 | 1.1474 | 1.0712 |
No log | 2.6667 | 64 | 0.9963 | 0.2781 | 0.9963 | 0.9981 |
No log | 2.75 | 66 | 0.9530 | 0.2390 | 0.9530 | 0.9762 |
No log | 2.8333 | 68 | 1.0258 | 0.0445 | 1.0258 | 1.0128 |
No log | 2.9167 | 70 | 0.9939 | 0.1076 | 0.9939 | 0.9970 |
No log | 3.0 | 72 | 0.9553 | 0.2912 | 0.9553 | 0.9774 |
No log | 3.0833 | 74 | 1.0256 | 0.2731 | 1.0256 | 1.0127 |
No log | 3.1667 | 76 | 1.1163 | 0.2260 | 1.1163 | 1.0566 |
No log | 3.25 | 78 | 1.0419 | 0.3131 | 1.0419 | 1.0207 |
No log | 3.3333 | 80 | 0.9537 | 0.3370 | 0.9537 | 0.9766 |
No log | 3.4167 | 82 | 0.9233 | 0.4438 | 0.9233 | 0.9609 |
No log | 3.5 | 84 | 0.9231 | 0.4275 | 0.9231 | 0.9608 |
No log | 3.5833 | 86 | 0.9396 | 0.4365 | 0.9396 | 0.9693 |
No log | 3.6667 | 88 | 0.9266 | 0.4915 | 0.9266 | 0.9626 |
No log | 3.75 | 90 | 0.8538 | 0.4769 | 0.8538 | 0.9240 |
No log | 3.8333 | 92 | 0.7824 | 0.6133 | 0.7824 | 0.8845 |
No log | 3.9167 | 94 | 0.7449 | 0.5035 | 0.7449 | 0.8631 |
No log | 4.0 | 96 | 0.7973 | 0.4421 | 0.7973 | 0.8929 |
No log | 4.0833 | 98 | 1.0362 | 0.3283 | 1.0362 | 1.0180 |
No log | 4.1667 | 100 | 1.1811 | 0.3001 | 1.1811 | 1.0868 |
No log | 4.25 | 102 | 1.0545 | 0.3218 | 1.0545 | 1.0269 |
No log | 4.3333 | 104 | 0.7491 | 0.4949 | 0.7491 | 0.8655 |
No log | 4.4167 | 106 | 0.6625 | 0.5446 | 0.6625 | 0.8139 |
No log | 4.5 | 108 | 0.6912 | 0.5329 | 0.6912 | 0.8314 |
No log | 4.5833 | 110 | 0.7396 | 0.4444 | 0.7396 | 0.8600 |
No log | 4.6667 | 112 | 0.7369 | 0.5057 | 0.7369 | 0.8585 |
No log | 4.75 | 114 | 0.7602 | 0.5127 | 0.7602 | 0.8719 |
No log | 4.8333 | 116 | 0.7781 | 0.4615 | 0.7781 | 0.8821 |
No log | 4.9167 | 118 | 0.8226 | 0.5065 | 0.8226 | 0.9070 |
No log | 5.0 | 120 | 0.9131 | 0.4051 | 0.9131 | 0.9556 |
No log | 5.0833 | 122 | 0.8026 | 0.5079 | 0.8026 | 0.8959 |
No log | 5.1667 | 124 | 0.7402 | 0.4962 | 0.7402 | 0.8603 |
No log | 5.25 | 126 | 0.7355 | 0.5512 | 0.7355 | 0.8576 |
No log | 5.3333 | 128 | 0.8009 | 0.5181 | 0.8009 | 0.8949 |
No log | 5.4167 | 130 | 0.9722 | 0.4359 | 0.9722 | 0.9860 |
No log | 5.5 | 132 | 0.8379 | 0.5538 | 0.8379 | 0.9154 |
No log | 5.5833 | 134 | 0.7056 | 0.5692 | 0.7056 | 0.8400 |
No log | 5.6667 | 136 | 0.8537 | 0.5019 | 0.8537 | 0.9240 |
No log | 5.75 | 138 | 0.7697 | 0.4893 | 0.7697 | 0.8773 |
No log | 5.8333 | 140 | 0.6772 | 0.5949 | 0.6772 | 0.8229 |
No log | 5.9167 | 142 | 0.7273 | 0.5540 | 0.7273 | 0.8528 |
No log | 6.0 | 144 | 0.6865 | 0.6043 | 0.6865 | 0.8286 |
No log | 6.0833 | 146 | 0.6663 | 0.5485 | 0.6663 | 0.8163 |
No log | 6.1667 | 148 | 0.6526 | 0.5262 | 0.6526 | 0.8078 |
No log | 6.25 | 150 | 0.6653 | 0.6325 | 0.6653 | 0.8157 |
No log | 6.3333 | 152 | 0.6915 | 0.6315 | 0.6915 | 0.8316 |
No log | 6.4167 | 154 | 0.6887 | 0.5980 | 0.6887 | 0.8299 |
No log | 6.5 | 156 | 0.7030 | 0.5980 | 0.7030 | 0.8385 |
No log | 6.5833 | 158 | 0.7386 | 0.5869 | 0.7386 | 0.8594 |
No log | 6.6667 | 160 | 0.7053 | 0.5680 | 0.7053 | 0.8398 |
No log | 6.75 | 162 | 0.7432 | 0.5759 | 0.7432 | 0.8621 |
No log | 6.8333 | 164 | 0.7517 | 0.5890 | 0.7517 | 0.8670 |
No log | 6.9167 | 166 | 0.7268 | 0.5659 | 0.7268 | 0.8525 |
No log | 7.0 | 168 | 0.7370 | 0.5204 | 0.7370 | 0.8585 |
No log | 7.0833 | 170 | 0.6638 | 0.6307 | 0.6638 | 0.8147 |
No log | 7.1667 | 172 | 0.6463 | 0.6762 | 0.6464 | 0.8040 |
No log | 7.25 | 174 | 0.6661 | 0.5955 | 0.6661 | 0.8162 |
No log | 7.3333 | 176 | 0.6305 | 0.6610 | 0.6305 | 0.7940 |
No log | 7.4167 | 178 | 0.7525 | 0.5735 | 0.7525 | 0.8675 |
No log | 7.5 | 180 | 0.7804 | 0.5443 | 0.7804 | 0.8834 |
No log | 7.5833 | 182 | 0.6912 | 0.5666 | 0.6912 | 0.8314 |
No log | 7.6667 | 184 | 0.6456 | 0.6456 | 0.6456 | 0.8035 |
No log | 7.75 | 186 | 0.6756 | 0.6165 | 0.6756 | 0.8220 |
No log | 7.8333 | 188 | 0.7471 | 0.5397 | 0.7471 | 0.8643 |
No log | 7.9167 | 190 | 0.7352 | 0.5410 | 0.7352 | 0.8575 |
No log | 8.0 | 192 | 0.7067 | 0.6724 | 0.7067 | 0.8407 |
No log | 8.0833 | 194 | 0.7465 | 0.5774 | 0.7465 | 0.8640 |
No log | 8.1667 | 196 | 0.8731 | 0.4470 | 0.8731 | 0.9344 |
No log | 8.25 | 198 | 0.8658 | 0.4588 | 0.8658 | 0.9305 |
No log | 8.3333 | 200 | 0.8049 | 0.5195 | 0.8049 | 0.8971 |
No log | 8.4167 | 202 | 0.7887 | 0.5160 | 0.7887 | 0.8881 |
No log | 8.5 | 204 | 0.8056 | 0.5301 | 0.8056 | 0.8976 |
No log | 8.5833 | 206 | 0.7984 | 0.5017 | 0.7984 | 0.8935 |
No log | 8.6667 | 208 | 0.8057 | 0.4375 | 0.8057 | 0.8976 |
No log | 8.75 | 210 | 0.7880 | 0.4757 | 0.7880 | 0.8877 |
No log | 8.8333 | 212 | 0.7851 | 0.4757 | 0.7851 | 0.8861 |
No log | 8.9167 | 214 | 0.7983 | 0.4974 | 0.7983 | 0.8935 |
No log | 9.0 | 216 | 0.7876 | 0.5261 | 0.7876 | 0.8875 |
No log | 9.0833 | 218 | 0.7914 | 0.5248 | 0.7914 | 0.8896 |
No log | 9.1667 | 220 | 0.7937 | 0.5473 | 0.7937 | 0.8909 |
No log | 9.25 | 222 | 0.7868 | 0.5798 | 0.7868 | 0.8870 |
No log | 9.3333 | 224 | 0.7797 | 0.5607 | 0.7797 | 0.8830 |
No log | 9.4167 | 226 | 0.7597 | 0.5540 | 0.7597 | 0.8716 |
No log | 9.5 | 228 | 0.7408 | 0.5614 | 0.7408 | 0.8607 |
No log | 9.5833 | 230 | 0.7787 | 0.5425 | 0.7787 | 0.8825 |
No log | 9.6667 | 232 | 0.7730 | 0.5635 | 0.7730 | 0.8792 |
No log | 9.75 | 234 | 0.8063 | 0.5370 | 0.8063 | 0.8979 |
No log | 9.8333 | 236 | 0.8565 | 0.4834 | 0.8565 | 0.9255 |
No log | 9.9167 | 238 | 0.8620 | 0.4450 | 0.8620 | 0.9284 |
No log | 10.0 | 240 | 0.8645 | 0.4537 | 0.8645 | 0.9298 |
No log | 10.0833 | 242 | 0.8889 | 0.4455 | 0.8889 | 0.9428 |
No log | 10.1667 | 244 | 0.9977 | 0.3781 | 0.9977 | 0.9989 |
No log | 10.25 | 246 | 0.9224 | 0.4642 | 0.9224 | 0.9604 |
No log | 10.3333 | 248 | 0.8796 | 0.4636 | 0.8796 | 0.9379 |
No log | 10.4167 | 250 | 0.9158 | 0.4517 | 0.9158 | 0.9570 |
No log | 10.5 | 252 | 0.8244 | 0.4871 | 0.8244 | 0.9079 |
No log | 10.5833 | 254 | 0.8311 | 0.4849 | 0.8311 | 0.9116 |
No log | 10.6667 | 256 | 0.8233 | 0.5393 | 0.8233 | 0.9074 |
No log | 10.75 | 258 | 0.8131 | 0.5518 | 0.8131 | 0.9017 |
No log | 10.8333 | 260 | 0.8746 | 0.4639 | 0.8746 | 0.9352 |
No log | 10.9167 | 262 | 0.8527 | 0.4954 | 0.8527 | 0.9234 |
No log | 11.0 | 264 | 0.8344 | 0.5379 | 0.8344 | 0.9135 |
No log | 11.0833 | 266 | 0.8635 | 0.4963 | 0.8635 | 0.9293 |
No log | 11.1667 | 268 | 0.8319 | 0.5671 | 0.8319 | 0.9121 |
No log | 11.25 | 270 | 0.8751 | 0.4440 | 0.8751 | 0.9354 |
No log | 11.3333 | 272 | 0.9062 | 0.4601 | 0.9062 | 0.9520 |
No log | 11.4167 | 274 | 0.8486 | 0.5006 | 0.8486 | 0.9212 |
No log | 11.5 | 276 | 0.7821 | 0.5637 | 0.7821 | 0.8844 |
No log | 11.5833 | 278 | 0.8129 | 0.5255 | 0.8129 | 0.9016 |
No log | 11.6667 | 280 | 0.8372 | 0.5358 | 0.8372 | 0.9150 |
No log | 11.75 | 282 | 0.8156 | 0.5042 | 0.8156 | 0.9031 |
No log | 11.8333 | 284 | 0.7989 | 0.5167 | 0.7989 | 0.8938 |
No log | 11.9167 | 286 | 0.7635 | 0.5774 | 0.7635 | 0.8738 |
No log | 12.0 | 288 | 0.7476 | 0.5751 | 0.7476 | 0.8647 |
No log | 12.0833 | 290 | 0.7327 | 0.6177 | 0.7327 | 0.8560 |
No log | 12.1667 | 292 | 0.8021 | 0.5668 | 0.8021 | 0.8956 |
No log | 12.25 | 294 | 0.7558 | 0.5934 | 0.7558 | 0.8694 |
No log | 12.3333 | 296 | 0.6879 | 0.5594 | 0.6879 | 0.8294 |
No log | 12.4167 | 298 | 0.6936 | 0.5647 | 0.6936 | 0.8328 |
No log | 12.5 | 300 | 0.7173 | 0.5894 | 0.7173 | 0.8469 |
No log | 12.5833 | 302 | 0.8856 | 0.4970 | 0.8856 | 0.9411 |
No log | 12.6667 | 304 | 0.9932 | 0.4458 | 0.9932 | 0.9966 |
No log | 12.75 | 306 | 0.9394 | 0.4359 | 0.9394 | 0.9692 |
No log | 12.8333 | 308 | 0.8255 | 0.4825 | 0.8255 | 0.9086 |
No log | 12.9167 | 310 | 0.7724 | 0.5766 | 0.7724 | 0.8789 |
No log | 13.0 | 312 | 0.8436 | 0.4719 | 0.8436 | 0.9185 |
No log | 13.0833 | 314 | 0.8301 | 0.4613 | 0.8301 | 0.9111 |
No log | 13.1667 | 316 | 0.7263 | 0.6008 | 0.7263 | 0.8522 |
No log | 13.25 | 318 | 0.6973 | 0.5455 | 0.6973 | 0.8350 |
No log | 13.3333 | 320 | 0.7162 | 0.5894 | 0.7162 | 0.8463 |
No log | 13.4167 | 322 | 0.7536 | 0.4586 | 0.7536 | 0.8681 |
No log | 13.5 | 324 | 0.7285 | 0.5093 | 0.7285 | 0.8535 |
No log | 13.5833 | 326 | 0.7366 | 0.4850 | 0.7366 | 0.8582 |
No log | 13.6667 | 328 | 0.7166 | 0.5331 | 0.7166 | 0.8465 |
No log | 13.75 | 330 | 0.7049 | 0.5858 | 0.7049 | 0.8396 |
No log | 13.8333 | 332 | 0.6818 | 0.5869 | 0.6818 | 0.8257 |
No log | 13.9167 | 334 | 0.7261 | 0.5766 | 0.7261 | 0.8521 |
No log | 14.0 | 336 | 0.8149 | 0.5705 | 0.8149 | 0.9027 |
No log | 14.0833 | 338 | 0.7586 | 0.5788 | 0.7586 | 0.8710 |
No log | 14.1667 | 340 | 0.7024 | 0.4772 | 0.7024 | 0.8381 |
No log | 14.25 | 342 | 0.7079 | 0.5135 | 0.7079 | 0.8413 |
No log | 14.3333 | 344 | 0.7171 | 0.5274 | 0.7171 | 0.8468 |
No log | 14.4167 | 346 | 0.7125 | 0.4772 | 0.7125 | 0.8441 |
No log | 14.5 | 348 | 0.7743 | 0.6071 | 0.7743 | 0.8800 |
No log | 14.5833 | 350 | 0.7630 | 0.5766 | 0.7630 | 0.8735 |
No log | 14.6667 | 352 | 0.7198 | 0.6048 | 0.7198 | 0.8484 |
No log | 14.75 | 354 | 0.7876 | 0.5222 | 0.7876 | 0.8875 |
No log | 14.8333 | 356 | 0.8086 | 0.4686 | 0.8086 | 0.8992 |
No log | 14.9167 | 358 | 0.7294 | 0.4565 | 0.7294 | 0.8540 |
No log | 15.0 | 360 | 0.7745 | 0.5602 | 0.7745 | 0.8801 |
No log | 15.0833 | 362 | 0.7899 | 0.5487 | 0.7899 | 0.8888 |
No log | 15.1667 | 364 | 0.7196 | 0.5540 | 0.7196 | 0.8483 |
No log | 15.25 | 366 | 0.6896 | 0.5038 | 0.6896 | 0.8305 |
No log | 15.3333 | 368 | 0.6799 | 0.5149 | 0.6799 | 0.8246 |
No log | 15.4167 | 370 | 0.6943 | 0.5821 | 0.6943 | 0.8332 |
No log | 15.5 | 372 | 0.7752 | 0.5726 | 0.7752 | 0.8805 |
No log | 15.5833 | 374 | 0.7772 | 0.5106 | 0.7772 | 0.8816 |
No log | 15.6667 | 376 | 0.7086 | 0.6081 | 0.7086 | 0.8418 |
No log | 15.75 | 378 | 0.6802 | 0.6091 | 0.6802 | 0.8247 |
No log | 15.8333 | 380 | 0.6879 | 0.6091 | 0.6879 | 0.8294 |
No log | 15.9167 | 382 | 0.6506 | 0.6301 | 0.6506 | 0.8066 |
No log | 16.0 | 384 | 0.6485 | 0.6154 | 0.6485 | 0.8053 |
No log | 16.0833 | 386 | 0.6613 | 0.6133 | 0.6613 | 0.8132 |
No log | 16.1667 | 388 | 0.6644 | 0.5590 | 0.6644 | 0.8151 |
No log | 16.25 | 390 | 0.6562 | 0.5301 | 0.6562 | 0.8101 |
No log | 16.3333 | 392 | 0.6545 | 0.5202 | 0.6545 | 0.8090 |
No log | 16.4167 | 394 | 0.6464 | 0.5934 | 0.6464 | 0.8040 |
No log | 16.5 | 396 | 0.6429 | 0.6716 | 0.6429 | 0.8018 |
No log | 16.5833 | 398 | 0.6835 | 0.6266 | 0.6835 | 0.8267 |
No log | 16.6667 | 400 | 0.6597 | 0.5909 | 0.6597 | 0.8122 |
No log | 16.75 | 402 | 0.6265 | 0.6518 | 0.6265 | 0.7915 |
No log | 16.8333 | 404 | 0.6342 | 0.6322 | 0.6342 | 0.7964 |
No log | 16.9167 | 406 | 0.6359 | 0.6165 | 0.6359 | 0.7974 |
No log | 17.0 | 408 | 0.6215 | 0.6276 | 0.6215 | 0.7883 |
No log | 17.0833 | 410 | 0.6144 | 0.5894 | 0.6144 | 0.7839 |
No log | 17.1667 | 412 | 0.6026 | 0.6441 | 0.6026 | 0.7762 |
No log | 17.25 | 414 | 0.6059 | 0.6441 | 0.6059 | 0.7784 |
No log | 17.3333 | 416 | 0.6103 | 0.6623 | 0.6103 | 0.7812 |
No log | 17.4167 | 418 | 0.6229 | 0.6291 | 0.6229 | 0.7892 |
No log | 17.5 | 420 | 0.6376 | 0.5869 | 0.6376 | 0.7985 |
No log | 17.5833 | 422 | 0.6365 | 0.5774 | 0.6365 | 0.7978 |
No log | 17.6667 | 424 | 0.6622 | 0.4822 | 0.6622 | 0.8137 |
No log | 17.75 | 426 | 0.6652 | 0.4938 | 0.6652 | 0.8156 |
No log | 17.8333 | 428 | 0.6641 | 0.5174 | 0.6641 | 0.8149 |
No log | 17.9167 | 430 | 0.6599 | 0.5032 | 0.6599 | 0.8123 |
No log | 18.0 | 432 | 0.6770 | 0.6209 | 0.6770 | 0.8228 |
No log | 18.0833 | 434 | 0.6982 | 0.5708 | 0.6982 | 0.8356 |
No log | 18.1667 | 436 | 0.6796 | 0.5933 | 0.6796 | 0.8244 |
No log | 18.25 | 438 | 0.6412 | 0.6390 | 0.6412 | 0.8008 |
No log | 18.3333 | 440 | 0.6426 | 0.6427 | 0.6426 | 0.8017 |
No log | 18.4167 | 442 | 0.6695 | 0.6073 | 0.6695 | 0.8182 |
No log | 18.5 | 444 | 0.6943 | 0.6147 | 0.6943 | 0.8333 |
No log | 18.5833 | 446 | 0.6640 | 0.6133 | 0.6640 | 0.8149 |
No log | 18.6667 | 448 | 0.6490 | 0.6107 | 0.6490 | 0.8056 |
No log | 18.75 | 450 | 0.6559 | 0.5441 | 0.6559 | 0.8099 |
No log | 18.8333 | 452 | 0.6515 | 0.5315 | 0.6515 | 0.8071 |
No log | 18.9167 | 454 | 0.6428 | 0.6479 | 0.6428 | 0.8017 |
No log | 19.0 | 456 | 0.6687 | 0.5708 | 0.6687 | 0.8178 |
No log | 19.0833 | 458 | 0.6558 | 0.6588 | 0.6558 | 0.8098 |
No log | 19.1667 | 460 | 0.6510 | 0.5057 | 0.6510 | 0.8069 |
No log | 19.25 | 462 | 0.6695 | 0.5554 | 0.6695 | 0.8182 |
No log | 19.3333 | 464 | 0.6635 | 0.5403 | 0.6635 | 0.8145 |
No log | 19.4167 | 466 | 0.6686 | 0.6259 | 0.6686 | 0.8177 |
No log | 19.5 | 468 | 0.6990 | 0.5875 | 0.6990 | 0.8361 |
No log | 19.5833 | 470 | 0.6863 | 0.6325 | 0.6863 | 0.8284 |
No log | 19.6667 | 472 | 0.6838 | 0.5847 | 0.6838 | 0.8269 |
No log | 19.75 | 474 | 0.6944 | 0.5516 | 0.6944 | 0.8333 |
No log | 19.8333 | 476 | 0.7085 | 0.5746 | 0.7085 | 0.8417 |
No log | 19.9167 | 478 | 0.7675 | 0.5729 | 0.7675 | 0.8760 |
No log | 20.0 | 480 | 0.8332 | 0.5018 | 0.8332 | 0.9128 |
No log | 20.0833 | 482 | 0.8044 | 0.5436 | 0.8044 | 0.8969 |
No log | 20.1667 | 484 | 0.7871 | 0.5571 | 0.7871 | 0.8872 |
No log | 20.25 | 486 | 0.7719 | 0.6118 | 0.7719 | 0.8786 |
No log | 20.3333 | 488 | 0.7597 | 0.5933 | 0.7597 | 0.8716 |
No log | 20.4167 | 490 | 0.7517 | 0.5986 | 0.7517 | 0.8670 |
No log | 20.5 | 492 | 0.7653 | 0.5774 | 0.7653 | 0.8748 |
No log | 20.5833 | 494 | 0.7571 | 0.5131 | 0.7571 | 0.8701 |
No log | 20.6667 | 496 | 0.7491 | 0.5260 | 0.7491 | 0.8655 |
No log | 20.75 | 498 | 0.7648 | 0.5729 | 0.7648 | 0.8745 |
0.3451 | 20.8333 | 500 | 0.7563 | 0.5708 | 0.7563 | 0.8697 |
0.3451 | 20.9167 | 502 | 0.7387 | 0.5708 | 0.7387 | 0.8595 |
0.3451 | 21.0 | 504 | 0.7095 | 0.6147 | 0.7095 | 0.8423 |
0.3451 | 21.0833 | 506 | 0.7003 | 0.5587 | 0.7003 | 0.8368 |
0.3451 | 21.1667 | 508 | 0.7426 | 0.4977 | 0.7426 | 0.8617 |
0.3451 | 21.25 | 510 | 0.7559 | 0.4641 | 0.7559 | 0.8694 |
0.3451 | 21.3333 | 512 | 0.7304 | 0.5563 | 0.7304 | 0.8546 |
0.3451 | 21.4167 | 514 | 0.7778 | 0.5588 | 0.7778 | 0.8819 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run1_AugV5_k9_task5_organization
Base model
aubmindlab/bert-base-arabertv02