ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k3_task7_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4190
  • Qwk: 0.6317
  • Mse: 0.4190
  • Rmse: 0.6473

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.2 2 2.6123 -0.1213 2.6123 1.6162
No log 0.4 4 1.2733 0.0495 1.2733 1.1284
No log 0.6 6 0.8888 0.0535 0.8888 0.9427
No log 0.8 8 0.8559 0.2328 0.8559 0.9251
No log 1.0 10 0.7017 0.2621 0.7017 0.8377
No log 1.2 12 0.6839 0.3169 0.6839 0.8270
No log 1.4 14 0.7108 0.2885 0.7108 0.8431
No log 1.6 16 0.6370 0.2063 0.6370 0.7981
No log 1.8 18 0.6868 0.3312 0.6868 0.8287
No log 2.0 20 0.6771 0.3312 0.6771 0.8228
No log 2.2 22 0.6451 0.2471 0.6451 0.8032
No log 2.4 24 0.6144 0.1327 0.6144 0.7838
No log 2.6 26 0.7481 0.3090 0.7481 0.8649
No log 2.8 28 0.7556 0.3051 0.7556 0.8693
No log 3.0 30 0.6302 0.3060 0.6302 0.7938
No log 3.2 32 0.5401 0.4420 0.5401 0.7349
No log 3.4 34 0.5822 0.4997 0.5822 0.7630
No log 3.6 36 0.5125 0.4468 0.5125 0.7159
No log 3.8 38 0.5040 0.4061 0.5040 0.7100
No log 4.0 40 0.4915 0.4561 0.4915 0.7011
No log 4.2 42 0.4976 0.5228 0.4976 0.7054
No log 4.4 44 0.4834 0.5386 0.4834 0.6953
No log 4.6 46 0.4585 0.5617 0.4585 0.6771
No log 4.8 48 0.4640 0.5918 0.4640 0.6812
No log 5.0 50 0.4477 0.6305 0.4477 0.6691
No log 5.2 52 0.4755 0.5779 0.4755 0.6896
No log 5.4 54 0.4755 0.5513 0.4755 0.6896
No log 5.6 56 0.4098 0.6601 0.4098 0.6401
No log 5.8 58 0.4966 0.5460 0.4966 0.7047
No log 6.0 60 0.6808 0.5670 0.6808 0.8251
No log 6.2 62 0.4879 0.5687 0.4879 0.6985
No log 6.4 64 0.4226 0.6446 0.4226 0.6501
No log 6.6 66 0.4205 0.6849 0.4205 0.6485
No log 6.8 68 0.7067 0.4867 0.7067 0.8407
No log 7.0 70 1.0647 0.3424 1.0647 1.0319
No log 7.2 72 1.0912 0.3303 1.0912 1.0446
No log 7.4 74 0.6415 0.5047 0.6415 0.8010
No log 7.6 76 0.3946 0.6977 0.3946 0.6281
No log 7.8 78 0.4495 0.6787 0.4495 0.6704
No log 8.0 80 0.3844 0.6847 0.3844 0.6200
No log 8.2 82 0.6298 0.5818 0.6298 0.7936
No log 8.4 84 0.9882 0.3676 0.9882 0.9941
No log 8.6 86 0.8814 0.4956 0.8814 0.9388
No log 8.8 88 0.5773 0.5862 0.5773 0.7598
No log 9.0 90 0.4577 0.5633 0.4577 0.6765
No log 9.2 92 0.4356 0.5114 0.4356 0.6600
No log 9.4 94 0.4416 0.4681 0.4416 0.6645
No log 9.6 96 0.4612 0.5577 0.4612 0.6791
No log 9.8 98 0.4992 0.5308 0.4992 0.7065
No log 10.0 100 0.6313 0.5570 0.6313 0.7945
No log 10.2 102 0.8275 0.4851 0.8275 0.9097
No log 10.4 104 0.6274 0.5259 0.6274 0.7921
No log 10.6 106 0.4443 0.6197 0.4443 0.6665
No log 10.8 108 0.5147 0.5836 0.5147 0.7174
No log 11.0 110 0.4673 0.5569 0.4673 0.6836
No log 11.2 112 0.4333 0.6201 0.4333 0.6583
No log 11.4 114 0.5513 0.5659 0.5513 0.7425
No log 11.6 116 0.5173 0.5470 0.5173 0.7192
No log 11.8 118 0.5126 0.5445 0.5126 0.7160
No log 12.0 120 0.4534 0.6341 0.4534 0.6734
No log 12.2 122 0.4400 0.6739 0.4400 0.6633
No log 12.4 124 0.4394 0.6301 0.4394 0.6628
No log 12.6 126 0.4540 0.6434 0.4540 0.6738
No log 12.8 128 0.4367 0.6292 0.4367 0.6608
No log 13.0 130 0.4503 0.6058 0.4503 0.6711
No log 13.2 132 0.4347 0.6518 0.4347 0.6593
No log 13.4 134 0.4501 0.6141 0.4501 0.6709
No log 13.6 136 0.5494 0.5595 0.5494 0.7412
No log 13.8 138 0.4917 0.5393 0.4917 0.7012
No log 14.0 140 0.4776 0.5922 0.4776 0.6911
No log 14.2 142 0.5271 0.5678 0.5271 0.7260
No log 14.4 144 0.4495 0.6248 0.4495 0.6705
No log 14.6 146 0.4161 0.6530 0.4161 0.6450
No log 14.8 148 0.4865 0.6135 0.4865 0.6975
No log 15.0 150 0.4418 0.6612 0.4418 0.6647
No log 15.2 152 0.4214 0.6672 0.4214 0.6492
No log 15.4 154 0.4367 0.6349 0.4367 0.6608
No log 15.6 156 0.4802 0.5922 0.4802 0.6929
No log 15.8 158 0.4289 0.6526 0.4289 0.6549
No log 16.0 160 0.4167 0.6530 0.4167 0.6455
No log 16.2 162 0.4356 0.6101 0.4356 0.6600
No log 16.4 164 0.4093 0.6530 0.4093 0.6398
No log 16.6 166 0.4534 0.6236 0.4534 0.6734
No log 16.8 168 0.5661 0.5153 0.5661 0.7524
No log 17.0 170 0.5673 0.5153 0.5673 0.7532
No log 17.2 172 0.4774 0.5735 0.4774 0.6909
No log 17.4 174 0.4089 0.6503 0.4089 0.6395
No log 17.6 176 0.4265 0.6359 0.4265 0.6530
No log 17.8 178 0.4293 0.6553 0.4293 0.6552
No log 18.0 180 0.4226 0.6183 0.4226 0.6501
No log 18.2 182 0.4160 0.5750 0.4160 0.6450
No log 18.4 184 0.4130 0.5846 0.4130 0.6426
No log 18.6 186 0.4139 0.5633 0.4139 0.6433
No log 18.8 188 0.4053 0.5539 0.4053 0.6366
No log 19.0 190 0.4075 0.6293 0.4075 0.6384
No log 19.2 192 0.4254 0.6599 0.4254 0.6522
No log 19.4 194 0.4095 0.6632 0.4095 0.6399
No log 19.6 196 0.4270 0.6337 0.4270 0.6535
No log 19.8 198 0.4782 0.6385 0.4782 0.6915
No log 20.0 200 0.5576 0.5678 0.5576 0.7467
No log 20.2 202 0.5022 0.6206 0.5022 0.7087
No log 20.4 204 0.4210 0.5672 0.4210 0.6489
No log 20.6 206 0.4471 0.6381 0.4471 0.6686
No log 20.8 208 0.5203 0.5086 0.5203 0.7213
No log 21.0 210 0.4927 0.5681 0.4927 0.7019
No log 21.2 212 0.4423 0.4729 0.4423 0.6651
No log 21.4 214 0.4301 0.5367 0.4301 0.6558
No log 21.6 216 0.4283 0.5658 0.4283 0.6545
No log 21.8 218 0.4252 0.6170 0.4252 0.6521
No log 22.0 220 0.4267 0.6210 0.4267 0.6532
No log 22.2 222 0.4349 0.6100 0.4349 0.6595
No log 22.4 224 0.4306 0.5910 0.4306 0.6562
No log 22.6 226 0.4219 0.5996 0.4219 0.6495
No log 22.8 228 0.4150 0.6052 0.4150 0.6442
No log 23.0 230 0.4077 0.5937 0.4077 0.6385
No log 23.2 232 0.4002 0.5986 0.4002 0.6326
No log 23.4 234 0.3902 0.6125 0.3902 0.6246
No log 23.6 236 0.3741 0.7180 0.3741 0.6116
No log 23.8 238 0.3840 0.6506 0.3840 0.6197
No log 24.0 240 0.4054 0.6593 0.4054 0.6367
No log 24.2 242 0.4651 0.6840 0.4651 0.6820
No log 24.4 244 0.4452 0.6840 0.4452 0.6673
No log 24.6 246 0.3832 0.6786 0.3832 0.6190
No log 24.8 248 0.3786 0.6068 0.3786 0.6153
No log 25.0 250 0.4069 0.5907 0.4069 0.6379
No log 25.2 252 0.3813 0.6182 0.3813 0.6175
No log 25.4 254 0.3564 0.7022 0.3564 0.5970
No log 25.6 256 0.4030 0.6593 0.4030 0.6348
No log 25.8 258 0.5037 0.6290 0.5037 0.7097
No log 26.0 260 0.4736 0.6202 0.4736 0.6882
No log 26.2 262 0.4021 0.6276 0.4021 0.6341
No log 26.4 264 0.3672 0.6942 0.3672 0.6060
No log 26.6 266 0.4187 0.5455 0.4187 0.6471
No log 26.8 268 0.4527 0.5544 0.4527 0.6728
No log 27.0 270 0.4260 0.5544 0.4260 0.6527
No log 27.2 272 0.3811 0.6462 0.3811 0.6173
No log 27.4 274 0.4041 0.6496 0.4041 0.6357
No log 27.6 276 0.4316 0.6392 0.4316 0.6570
No log 27.8 278 0.4179 0.6579 0.4179 0.6465
No log 28.0 280 0.3792 0.6408 0.3792 0.6158
No log 28.2 282 0.3922 0.6077 0.3922 0.6263
No log 28.4 284 0.4360 0.5975 0.4360 0.6603
No log 28.6 286 0.4222 0.6167 0.4222 0.6498
No log 28.8 288 0.3749 0.6313 0.3749 0.6123
No log 29.0 290 0.3665 0.6623 0.3665 0.6054
No log 29.2 292 0.3739 0.6883 0.3739 0.6115
No log 29.4 294 0.3729 0.7002 0.3729 0.6107
No log 29.6 296 0.3724 0.6908 0.3724 0.6103
No log 29.8 298 0.3782 0.7012 0.3782 0.6150
No log 30.0 300 0.3947 0.6197 0.3947 0.6283
No log 30.2 302 0.4125 0.6197 0.4125 0.6423
No log 30.4 304 0.4003 0.6197 0.4003 0.6327
No log 30.6 306 0.3936 0.6125 0.3936 0.6274
No log 30.8 308 0.4095 0.6698 0.4095 0.6399
No log 31.0 310 0.4130 0.6240 0.4130 0.6426
No log 31.2 312 0.4345 0.6415 0.4345 0.6591
No log 31.4 314 0.4826 0.6293 0.4826 0.6947
No log 31.6 316 0.4876 0.6096 0.4876 0.6983
No log 31.8 318 0.4350 0.6240 0.4350 0.6595
No log 32.0 320 0.4149 0.6065 0.4149 0.6441
No log 32.2 322 0.4161 0.6083 0.4161 0.6450
No log 32.4 324 0.4085 0.6284 0.4085 0.6391
No log 32.6 326 0.4101 0.6463 0.4101 0.6404
No log 32.8 328 0.4204 0.7402 0.4204 0.6483
No log 33.0 330 0.4181 0.7158 0.4181 0.6466
No log 33.2 332 0.4038 0.7540 0.4038 0.6355
No log 33.4 334 0.3933 0.7548 0.3933 0.6272
No log 33.6 336 0.4021 0.6101 0.4021 0.6341
No log 33.8 338 0.3992 0.6183 0.3992 0.6318
No log 34.0 340 0.3886 0.7144 0.3886 0.6233
No log 34.2 342 0.4163 0.6694 0.4163 0.6452
No log 34.4 344 0.4398 0.6238 0.4398 0.6632
No log 34.6 346 0.4170 0.6337 0.4170 0.6457
No log 34.8 348 0.3892 0.7284 0.3892 0.6239
No log 35.0 350 0.4076 0.7031 0.4076 0.6385
No log 35.2 352 0.4267 0.6606 0.4267 0.6532
No log 35.4 354 0.4249 0.6600 0.4249 0.6518
No log 35.6 356 0.4249 0.6580 0.4249 0.6518
No log 35.8 358 0.4251 0.6877 0.4251 0.6520
No log 36.0 360 0.4378 0.6519 0.4378 0.6617
No log 36.2 362 0.4372 0.6430 0.4372 0.6612
No log 36.4 364 0.4397 0.6507 0.4397 0.6631
No log 36.6 366 0.4291 0.6604 0.4291 0.6550
No log 36.8 368 0.4255 0.6611 0.4255 0.6523
No log 37.0 370 0.4163 0.6060 0.4163 0.6452
No log 37.2 372 0.4038 0.6293 0.4038 0.6354
No log 37.4 374 0.3965 0.5440 0.3965 0.6297
No log 37.6 376 0.3925 0.5800 0.3925 0.6265
No log 37.8 378 0.3987 0.6720 0.3987 0.6314
No log 38.0 380 0.4248 0.6860 0.4248 0.6518
No log 38.2 382 0.4332 0.6333 0.4332 0.6582
No log 38.4 384 0.4191 0.6415 0.4191 0.6474
No log 38.6 386 0.3911 0.6709 0.3911 0.6254
No log 38.8 388 0.3947 0.6154 0.3947 0.6283
No log 39.0 390 0.4387 0.5947 0.4387 0.6623
No log 39.2 392 0.4457 0.5947 0.4457 0.6676
No log 39.4 394 0.4245 0.6182 0.4245 0.6515
No log 39.6 396 0.4013 0.6140 0.4013 0.6335
No log 39.8 398 0.3964 0.6215 0.3964 0.6296
No log 40.0 400 0.4057 0.6709 0.4057 0.6370
No log 40.2 402 0.4066 0.6530 0.4066 0.6377
No log 40.4 404 0.4070 0.6530 0.4070 0.6379
No log 40.6 406 0.4100 0.6530 0.4100 0.6403
No log 40.8 408 0.4260 0.6341 0.4260 0.6527
No log 41.0 410 0.4317 0.6599 0.4317 0.6571
No log 41.2 412 0.4217 0.6599 0.4217 0.6494
No log 41.4 414 0.4025 0.6530 0.4025 0.6344
No log 41.6 416 0.3947 0.6140 0.3947 0.6283
No log 41.8 418 0.4048 0.5781 0.4048 0.6362
No log 42.0 420 0.4075 0.5781 0.4075 0.6383
No log 42.2 422 0.4016 0.6269 0.4016 0.6337
No log 42.4 424 0.4000 0.6435 0.4000 0.6325
No log 42.6 426 0.4022 0.6530 0.4022 0.6342
No log 42.8 428 0.4102 0.6530 0.4102 0.6405
No log 43.0 430 0.4252 0.5845 0.4252 0.6521
No log 43.2 432 0.4517 0.6586 0.4517 0.6721
No log 43.4 434 0.4598 0.6092 0.4598 0.6781
No log 43.6 436 0.4445 0.6003 0.4445 0.6667
No log 43.8 438 0.4368 0.5625 0.4368 0.6609
No log 44.0 440 0.4400 0.6032 0.4400 0.6634
No log 44.2 442 0.4367 0.6032 0.4367 0.6608
No log 44.4 444 0.4263 0.5584 0.4263 0.6529
No log 44.6 446 0.4262 0.5800 0.4262 0.6528
No log 44.8 448 0.4407 0.6599 0.4407 0.6639
No log 45.0 450 0.4582 0.6581 0.4582 0.6769
No log 45.2 452 0.4547 0.6296 0.4547 0.6743
No log 45.4 454 0.4229 0.6492 0.4229 0.6503
No log 45.6 456 0.4050 0.6200 0.4050 0.6364
No log 45.8 458 0.4023 0.5986 0.4023 0.6343
No log 46.0 460 0.4036 0.5986 0.4036 0.6353
No log 46.2 462 0.4038 0.5986 0.4038 0.6355
No log 46.4 464 0.4051 0.5986 0.4051 0.6365
No log 46.6 466 0.4062 0.5986 0.4062 0.6374
No log 46.8 468 0.4077 0.5986 0.4077 0.6385
No log 47.0 470 0.4149 0.5986 0.4149 0.6442
No log 47.2 472 0.4306 0.6186 0.4306 0.6562
No log 47.4 474 0.4593 0.6073 0.4593 0.6778
No log 47.6 476 0.4999 0.5527 0.4999 0.7070
No log 47.8 478 0.5231 0.5992 0.5231 0.7233
No log 48.0 480 0.5081 0.6281 0.5081 0.7128
No log 48.2 482 0.4634 0.6496 0.4634 0.6807
No log 48.4 484 0.4194 0.6214 0.4194 0.6476
No log 48.6 486 0.4117 0.6215 0.4117 0.6417
No log 48.8 488 0.4123 0.6242 0.4123 0.6421
No log 49.0 490 0.4137 0.6140 0.4137 0.6432
No log 49.2 492 0.4127 0.5915 0.4127 0.6424
No log 49.4 494 0.4138 0.6046 0.4138 0.6433
No log 49.6 496 0.4182 0.6455 0.4182 0.6467
No log 49.8 498 0.4185 0.6464 0.4185 0.6469
0.2315 50.0 500 0.4214 0.6389 0.4214 0.6492
0.2315 50.2 502 0.4244 0.6567 0.4244 0.6514
0.2315 50.4 504 0.4277 0.6567 0.4277 0.6540
0.2315 50.6 506 0.4260 0.6140 0.4260 0.6527
0.2315 50.8 508 0.4306 0.6357 0.4306 0.6562
0.2315 51.0 510 0.4335 0.6567 0.4335 0.6584
0.2315 51.2 512 0.4272 0.6140 0.4272 0.6536
0.2315 51.4 514 0.4234 0.5815 0.4234 0.6507
0.2315 51.6 516 0.4206 0.5815 0.4206 0.6485
0.2315 51.8 518 0.4215 0.5800 0.4215 0.6493
0.2315 52.0 520 0.4190 0.6317 0.4190 0.6473

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k3_task7_organization

Finetuned
(4204)
this model