ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k4_task5_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5618
- Qwk: 0.6278
- Mse: 0.5618
- Rmse: 0.7495
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1538 | 2 | 3.8113 | -0.0347 | 3.8113 | 1.9523 |
No log | 0.3077 | 4 | 2.1127 | 0.0440 | 2.1127 | 1.4535 |
No log | 0.4615 | 6 | 1.3395 | 0.0232 | 1.3395 | 1.1574 |
No log | 0.6154 | 8 | 1.0519 | 0.2692 | 1.0519 | 1.0256 |
No log | 0.7692 | 10 | 1.0227 | 0.3117 | 1.0227 | 1.0113 |
No log | 0.9231 | 12 | 1.0832 | 0.2004 | 1.0832 | 1.0408 |
No log | 1.0769 | 14 | 1.3264 | 0.0 | 1.3264 | 1.1517 |
No log | 1.2308 | 16 | 1.3362 | 0.0 | 1.3362 | 1.1560 |
No log | 1.3846 | 18 | 1.2685 | 0.0380 | 1.2685 | 1.1263 |
No log | 1.5385 | 20 | 1.0438 | 0.2758 | 1.0438 | 1.0217 |
No log | 1.6923 | 22 | 0.9944 | 0.2991 | 0.9944 | 0.9972 |
No log | 1.8462 | 24 | 1.0625 | 0.3082 | 1.0625 | 1.0308 |
No log | 2.0 | 26 | 1.4829 | 0.0380 | 1.4829 | 1.2177 |
No log | 2.1538 | 28 | 1.7745 | 0.0307 | 1.7745 | 1.3321 |
No log | 2.3077 | 30 | 1.5788 | 0.0057 | 1.5788 | 1.2565 |
No log | 2.4615 | 32 | 1.1120 | 0.1324 | 1.1120 | 1.0545 |
No log | 2.6154 | 34 | 0.7925 | 0.4285 | 0.7925 | 0.8902 |
No log | 2.7692 | 36 | 0.7190 | 0.5394 | 0.7190 | 0.8479 |
No log | 2.9231 | 38 | 0.7155 | 0.5455 | 0.7155 | 0.8458 |
No log | 3.0769 | 40 | 0.7085 | 0.5257 | 0.7085 | 0.8417 |
No log | 3.2308 | 42 | 0.6254 | 0.5302 | 0.6254 | 0.7908 |
No log | 3.3846 | 44 | 0.6547 | 0.5084 | 0.6547 | 0.8091 |
No log | 3.5385 | 46 | 0.6634 | 0.4838 | 0.6634 | 0.8145 |
No log | 3.6923 | 48 | 0.6474 | 0.5847 | 0.6474 | 0.8046 |
No log | 3.8462 | 50 | 0.6521 | 0.5644 | 0.6521 | 0.8075 |
No log | 4.0 | 52 | 0.6576 | 0.5797 | 0.6576 | 0.8109 |
No log | 4.1538 | 54 | 0.6764 | 0.6045 | 0.6764 | 0.8224 |
No log | 4.3077 | 56 | 0.6838 | 0.5274 | 0.6838 | 0.8269 |
No log | 4.4615 | 58 | 0.7701 | 0.5674 | 0.7701 | 0.8775 |
No log | 4.6154 | 60 | 0.7339 | 0.5192 | 0.7339 | 0.8567 |
No log | 4.7692 | 62 | 0.6676 | 0.6280 | 0.6676 | 0.8171 |
No log | 4.9231 | 64 | 0.6710 | 0.6353 | 0.6710 | 0.8191 |
No log | 5.0769 | 66 | 0.6301 | 0.6073 | 0.6301 | 0.7938 |
No log | 5.2308 | 68 | 0.6497 | 0.6424 | 0.6497 | 0.8060 |
No log | 5.3846 | 70 | 1.0149 | 0.5101 | 1.0149 | 1.0074 |
No log | 5.5385 | 72 | 1.0173 | 0.5178 | 1.0173 | 1.0086 |
No log | 5.6923 | 74 | 0.7740 | 0.6083 | 0.7740 | 0.8798 |
No log | 5.8462 | 76 | 0.6241 | 0.6470 | 0.6241 | 0.7900 |
No log | 6.0 | 78 | 0.6445 | 0.5392 | 0.6445 | 0.8028 |
No log | 6.1538 | 80 | 0.6388 | 0.6419 | 0.6388 | 0.7993 |
No log | 6.3077 | 82 | 0.6270 | 0.6111 | 0.6270 | 0.7918 |
No log | 6.4615 | 84 | 0.7723 | 0.6397 | 0.7723 | 0.8788 |
No log | 6.6154 | 86 | 0.9944 | 0.5665 | 0.9944 | 0.9972 |
No log | 6.7692 | 88 | 0.9541 | 0.5665 | 0.9541 | 0.9768 |
No log | 6.9231 | 90 | 0.7780 | 0.6091 | 0.7780 | 0.8821 |
No log | 7.0769 | 92 | 0.6553 | 0.5991 | 0.6553 | 0.8095 |
No log | 7.2308 | 94 | 0.6785 | 0.6331 | 0.6785 | 0.8237 |
No log | 7.3846 | 96 | 0.6893 | 0.6459 | 0.6893 | 0.8302 |
No log | 7.5385 | 98 | 0.6249 | 0.6263 | 0.6249 | 0.7905 |
No log | 7.6923 | 100 | 0.6556 | 0.6551 | 0.6556 | 0.8097 |
No log | 7.8462 | 102 | 0.7486 | 0.6722 | 0.7486 | 0.8652 |
No log | 8.0 | 104 | 0.7315 | 0.5992 | 0.7315 | 0.8553 |
No log | 8.1538 | 106 | 0.6250 | 0.5650 | 0.6250 | 0.7906 |
No log | 8.3077 | 108 | 0.5973 | 0.5773 | 0.5973 | 0.7728 |
No log | 8.4615 | 110 | 0.6206 | 0.6272 | 0.6206 | 0.7878 |
No log | 8.6154 | 112 | 0.6260 | 0.6196 | 0.6260 | 0.7912 |
No log | 8.7692 | 114 | 0.6324 | 0.6260 | 0.6324 | 0.7952 |
No log | 8.9231 | 116 | 0.6291 | 0.6094 | 0.6291 | 0.7932 |
No log | 9.0769 | 118 | 0.6235 | 0.6263 | 0.6235 | 0.7896 |
No log | 9.2308 | 120 | 0.6678 | 0.6756 | 0.6678 | 0.8172 |
No log | 9.3846 | 122 | 0.6872 | 0.6492 | 0.6872 | 0.8290 |
No log | 9.5385 | 124 | 0.7313 | 0.6468 | 0.7313 | 0.8551 |
No log | 9.6923 | 126 | 0.7252 | 0.6468 | 0.7252 | 0.8516 |
No log | 9.8462 | 128 | 0.6630 | 0.6120 | 0.6630 | 0.8142 |
No log | 10.0 | 130 | 0.6747 | 0.6260 | 0.6747 | 0.8214 |
No log | 10.1538 | 132 | 0.6855 | 0.6094 | 0.6855 | 0.8280 |
No log | 10.3077 | 134 | 0.7090 | 0.6465 | 0.7090 | 0.8420 |
No log | 10.4615 | 136 | 0.7011 | 0.6718 | 0.7011 | 0.8373 |
No log | 10.6154 | 138 | 0.6468 | 0.5935 | 0.6468 | 0.8043 |
No log | 10.7692 | 140 | 0.6711 | 0.5905 | 0.6711 | 0.8192 |
No log | 10.9231 | 142 | 0.6544 | 0.6111 | 0.6544 | 0.8089 |
No log | 11.0769 | 144 | 0.6515 | 0.6445 | 0.6515 | 0.8072 |
No log | 11.2308 | 146 | 0.6789 | 0.6711 | 0.6789 | 0.8240 |
No log | 11.3846 | 148 | 0.6643 | 0.6606 | 0.6643 | 0.8150 |
No log | 11.5385 | 150 | 0.6468 | 0.6672 | 0.6468 | 0.8042 |
No log | 11.6923 | 152 | 0.6404 | 0.5949 | 0.6404 | 0.8003 |
No log | 11.8462 | 154 | 0.6320 | 0.6408 | 0.6320 | 0.7950 |
No log | 12.0 | 156 | 0.6305 | 0.6284 | 0.6305 | 0.7940 |
No log | 12.1538 | 158 | 0.6259 | 0.5725 | 0.6259 | 0.7912 |
No log | 12.3077 | 160 | 0.6211 | 0.5774 | 0.6211 | 0.7881 |
No log | 12.4615 | 162 | 0.6394 | 0.6138 | 0.6394 | 0.7996 |
No log | 12.6154 | 164 | 0.6553 | 0.5933 | 0.6553 | 0.8095 |
No log | 12.7692 | 166 | 0.6164 | 0.5742 | 0.6164 | 0.7851 |
No log | 12.9231 | 168 | 0.6429 | 0.6610 | 0.6429 | 0.8018 |
No log | 13.0769 | 170 | 0.7833 | 0.6397 | 0.7833 | 0.8850 |
No log | 13.2308 | 172 | 0.8128 | 0.6374 | 0.8128 | 0.9016 |
No log | 13.3846 | 174 | 0.7250 | 0.6773 | 0.7250 | 0.8514 |
No log | 13.5385 | 176 | 0.6494 | 0.6177 | 0.6494 | 0.8059 |
No log | 13.6923 | 178 | 0.6711 | 0.6287 | 0.6711 | 0.8192 |
No log | 13.8462 | 180 | 0.6560 | 0.6587 | 0.6560 | 0.8100 |
No log | 14.0 | 182 | 0.6149 | 0.5966 | 0.6149 | 0.7842 |
No log | 14.1538 | 184 | 0.6272 | 0.5663 | 0.6272 | 0.7920 |
No log | 14.3077 | 186 | 0.5974 | 0.5503 | 0.5974 | 0.7729 |
No log | 14.4615 | 188 | 0.5774 | 0.5622 | 0.5774 | 0.7599 |
No log | 14.6154 | 190 | 0.6176 | 0.6561 | 0.6176 | 0.7859 |
No log | 14.7692 | 192 | 0.6728 | 0.6499 | 0.6728 | 0.8203 |
No log | 14.9231 | 194 | 0.6884 | 0.6430 | 0.6884 | 0.8297 |
No log | 15.0769 | 196 | 0.7409 | 0.5848 | 0.7409 | 0.8607 |
No log | 15.2308 | 198 | 0.8025 | 0.5904 | 0.8025 | 0.8958 |
No log | 15.3846 | 200 | 0.7925 | 0.5670 | 0.7925 | 0.8902 |
No log | 15.5385 | 202 | 0.7341 | 0.5999 | 0.7341 | 0.8568 |
No log | 15.6923 | 204 | 0.7017 | 0.7014 | 0.7017 | 0.8377 |
No log | 15.8462 | 206 | 0.6810 | 0.6728 | 0.6810 | 0.8252 |
No log | 16.0 | 208 | 0.6199 | 0.6835 | 0.6199 | 0.7873 |
No log | 16.1538 | 210 | 0.6025 | 0.6772 | 0.6025 | 0.7762 |
No log | 16.3077 | 212 | 0.6118 | 0.6772 | 0.6118 | 0.7822 |
No log | 16.4615 | 214 | 0.6135 | 0.6518 | 0.6135 | 0.7833 |
No log | 16.6154 | 216 | 0.6571 | 0.6728 | 0.6571 | 0.8106 |
No log | 16.7692 | 218 | 0.7379 | 0.5537 | 0.7379 | 0.8590 |
No log | 16.9231 | 220 | 0.7599 | 0.5715 | 0.7599 | 0.8717 |
No log | 17.0769 | 222 | 0.7274 | 0.5864 | 0.7274 | 0.8529 |
No log | 17.2308 | 224 | 0.6620 | 0.5730 | 0.6620 | 0.8136 |
No log | 17.3846 | 226 | 0.6337 | 0.6804 | 0.6337 | 0.7961 |
No log | 17.5385 | 228 | 0.6690 | 0.6393 | 0.6690 | 0.8180 |
No log | 17.6923 | 230 | 0.6881 | 0.6726 | 0.6881 | 0.8295 |
No log | 17.8462 | 232 | 0.6868 | 0.7067 | 0.6868 | 0.8288 |
No log | 18.0 | 234 | 0.6748 | 0.6888 | 0.6748 | 0.8214 |
No log | 18.1538 | 236 | 0.6304 | 0.6484 | 0.6304 | 0.7940 |
No log | 18.3077 | 238 | 0.6065 | 0.6526 | 0.6065 | 0.7788 |
No log | 18.4615 | 240 | 0.6105 | 0.6087 | 0.6105 | 0.7813 |
No log | 18.6154 | 242 | 0.6081 | 0.6392 | 0.6081 | 0.7798 |
No log | 18.7692 | 244 | 0.5948 | 0.6328 | 0.5948 | 0.7712 |
No log | 18.9231 | 246 | 0.5863 | 0.6476 | 0.5863 | 0.7657 |
No log | 19.0769 | 248 | 0.5831 | 0.6617 | 0.5831 | 0.7636 |
No log | 19.2308 | 250 | 0.5968 | 0.7156 | 0.5968 | 0.7725 |
No log | 19.3846 | 252 | 0.6017 | 0.6979 | 0.6017 | 0.7757 |
No log | 19.5385 | 254 | 0.5811 | 0.6680 | 0.5811 | 0.7623 |
No log | 19.6923 | 256 | 0.5883 | 0.6280 | 0.5883 | 0.7670 |
No log | 19.8462 | 258 | 0.5918 | 0.6272 | 0.5918 | 0.7693 |
No log | 20.0 | 260 | 0.5710 | 0.6528 | 0.5710 | 0.7557 |
No log | 20.1538 | 262 | 0.5561 | 0.6398 | 0.5561 | 0.7458 |
No log | 20.3077 | 264 | 0.5585 | 0.6528 | 0.5585 | 0.7473 |
No log | 20.4615 | 266 | 0.5626 | 0.6528 | 0.5626 | 0.7501 |
No log | 20.6154 | 268 | 0.5555 | 0.6680 | 0.5555 | 0.7453 |
No log | 20.7692 | 270 | 0.5829 | 0.6843 | 0.5829 | 0.7635 |
No log | 20.9231 | 272 | 0.6101 | 0.6857 | 0.6101 | 0.7811 |
No log | 21.0769 | 274 | 0.6011 | 0.6857 | 0.6011 | 0.7753 |
No log | 21.2308 | 276 | 0.5743 | 0.6999 | 0.5743 | 0.7578 |
No log | 21.3846 | 278 | 0.5509 | 0.6518 | 0.5509 | 0.7422 |
No log | 21.5385 | 280 | 0.5392 | 0.6491 | 0.5392 | 0.7343 |
No log | 21.6923 | 282 | 0.5445 | 0.6380 | 0.5445 | 0.7379 |
No log | 21.8462 | 284 | 0.5651 | 0.6597 | 0.5651 | 0.7517 |
No log | 22.0 | 286 | 0.6083 | 0.7001 | 0.6083 | 0.7800 |
No log | 22.1538 | 288 | 0.6427 | 0.7141 | 0.6427 | 0.8017 |
No log | 22.3077 | 290 | 0.6352 | 0.7147 | 0.6352 | 0.7970 |
No log | 22.4615 | 292 | 0.6152 | 0.7061 | 0.6152 | 0.7844 |
No log | 22.6154 | 294 | 0.6230 | 0.6904 | 0.6230 | 0.7893 |
No log | 22.7692 | 296 | 0.6191 | 0.7004 | 0.6191 | 0.7868 |
No log | 22.9231 | 298 | 0.5855 | 0.7019 | 0.5855 | 0.7652 |
No log | 23.0769 | 300 | 0.5675 | 0.6774 | 0.5675 | 0.7533 |
No log | 23.2308 | 302 | 0.5516 | 0.6797 | 0.5516 | 0.7427 |
No log | 23.3846 | 304 | 0.5360 | 0.6555 | 0.5360 | 0.7321 |
No log | 23.5385 | 306 | 0.5263 | 0.6482 | 0.5263 | 0.7255 |
No log | 23.6923 | 308 | 0.5218 | 0.6421 | 0.5218 | 0.7224 |
No log | 23.8462 | 310 | 0.5190 | 0.6476 | 0.5190 | 0.7204 |
No log | 24.0 | 312 | 0.5192 | 0.6586 | 0.5192 | 0.7206 |
No log | 24.1538 | 314 | 0.5145 | 0.6244 | 0.5145 | 0.7173 |
No log | 24.3077 | 316 | 0.5150 | 0.6509 | 0.5150 | 0.7177 |
No log | 24.4615 | 318 | 0.5183 | 0.6500 | 0.5183 | 0.7200 |
No log | 24.6154 | 320 | 0.5323 | 0.6143 | 0.5323 | 0.7296 |
No log | 24.7692 | 322 | 0.5378 | 0.6433 | 0.5378 | 0.7334 |
No log | 24.9231 | 324 | 0.5474 | 0.6414 | 0.5474 | 0.7398 |
No log | 25.0769 | 326 | 0.5679 | 0.6578 | 0.5679 | 0.7536 |
No log | 25.2308 | 328 | 0.5886 | 0.6636 | 0.5886 | 0.7672 |
No log | 25.3846 | 330 | 0.5854 | 0.6476 | 0.5854 | 0.7651 |
No log | 25.5385 | 332 | 0.5756 | 0.6484 | 0.5756 | 0.7587 |
No log | 25.6923 | 334 | 0.5656 | 0.6484 | 0.5656 | 0.7521 |
No log | 25.8462 | 336 | 0.5609 | 0.6138 | 0.5609 | 0.7489 |
No log | 26.0 | 338 | 0.5566 | 0.5964 | 0.5566 | 0.7461 |
No log | 26.1538 | 340 | 0.5550 | 0.6288 | 0.5550 | 0.7450 |
No log | 26.3077 | 342 | 0.5653 | 0.5964 | 0.5653 | 0.7518 |
No log | 26.4615 | 344 | 0.5756 | 0.6025 | 0.5756 | 0.7587 |
No log | 26.6154 | 346 | 0.5740 | 0.6229 | 0.5740 | 0.7576 |
No log | 26.7692 | 348 | 0.5642 | 0.5913 | 0.5642 | 0.7511 |
No log | 26.9231 | 350 | 0.5622 | 0.6442 | 0.5622 | 0.7498 |
No log | 27.0769 | 352 | 0.5667 | 0.6602 | 0.5667 | 0.7528 |
No log | 27.2308 | 354 | 0.5604 | 0.6909 | 0.5604 | 0.7486 |
No log | 27.3846 | 356 | 0.5579 | 0.6310 | 0.5579 | 0.7469 |
No log | 27.5385 | 358 | 0.6150 | 0.6993 | 0.6150 | 0.7842 |
No log | 27.6923 | 360 | 0.6448 | 0.6766 | 0.6448 | 0.8030 |
No log | 27.8462 | 362 | 0.6084 | 0.6639 | 0.6084 | 0.7800 |
No log | 28.0 | 364 | 0.5594 | 0.6614 | 0.5594 | 0.7480 |
No log | 28.1538 | 366 | 0.5445 | 0.6113 | 0.5445 | 0.7379 |
No log | 28.3077 | 368 | 0.5369 | 0.6247 | 0.5369 | 0.7327 |
No log | 28.4615 | 370 | 0.5383 | 0.6247 | 0.5383 | 0.7337 |
No log | 28.6154 | 372 | 0.5482 | 0.6822 | 0.5482 | 0.7404 |
No log | 28.7692 | 374 | 0.5428 | 0.6473 | 0.5428 | 0.7368 |
No log | 28.9231 | 376 | 0.5227 | 0.6656 | 0.5227 | 0.7229 |
No log | 29.0769 | 378 | 0.5196 | 0.6247 | 0.5196 | 0.7208 |
No log | 29.2308 | 380 | 0.5174 | 0.6256 | 0.5174 | 0.7193 |
No log | 29.3846 | 382 | 0.5198 | 0.6493 | 0.5198 | 0.7210 |
No log | 29.5385 | 384 | 0.5097 | 0.6235 | 0.5097 | 0.7139 |
No log | 29.6923 | 386 | 0.5100 | 0.6347 | 0.5100 | 0.7142 |
No log | 29.8462 | 388 | 0.5570 | 0.6740 | 0.5570 | 0.7464 |
No log | 30.0 | 390 | 0.5958 | 0.6720 | 0.5958 | 0.7719 |
No log | 30.1538 | 392 | 0.5705 | 0.6386 | 0.5705 | 0.7553 |
No log | 30.3077 | 394 | 0.5307 | 0.6716 | 0.5307 | 0.7285 |
No log | 30.4615 | 396 | 0.5353 | 0.6102 | 0.5353 | 0.7316 |
No log | 30.6154 | 398 | 0.5600 | 0.6760 | 0.5600 | 0.7483 |
No log | 30.7692 | 400 | 0.5611 | 0.6452 | 0.5611 | 0.7490 |
No log | 30.9231 | 402 | 0.5532 | 0.6102 | 0.5532 | 0.7438 |
No log | 31.0769 | 404 | 0.5584 | 0.6519 | 0.5584 | 0.7473 |
No log | 31.2308 | 406 | 0.5401 | 0.6119 | 0.5401 | 0.7349 |
No log | 31.3846 | 408 | 0.5254 | 0.6301 | 0.5254 | 0.7249 |
No log | 31.5385 | 410 | 0.5274 | 0.6452 | 0.5274 | 0.7262 |
No log | 31.6923 | 412 | 0.5226 | 0.6927 | 0.5226 | 0.7229 |
No log | 31.8462 | 414 | 0.5434 | 0.7120 | 0.5434 | 0.7371 |
No log | 32.0 | 416 | 0.5504 | 0.7120 | 0.5504 | 0.7419 |
No log | 32.1538 | 418 | 0.5488 | 0.7207 | 0.5488 | 0.7408 |
No log | 32.3077 | 420 | 0.5456 | 0.6927 | 0.5456 | 0.7386 |
No log | 32.4615 | 422 | 0.5453 | 0.6775 | 0.5453 | 0.7384 |
No log | 32.6154 | 424 | 0.5435 | 0.6624 | 0.5435 | 0.7372 |
No log | 32.7692 | 426 | 0.5568 | 0.7048 | 0.5568 | 0.7462 |
No log | 32.9231 | 428 | 0.5731 | 0.7251 | 0.5731 | 0.7571 |
No log | 33.0769 | 430 | 0.5730 | 0.7206 | 0.5730 | 0.7570 |
No log | 33.2308 | 432 | 0.5641 | 0.6632 | 0.5641 | 0.7511 |
No log | 33.3846 | 434 | 0.5712 | 0.6593 | 0.5712 | 0.7558 |
No log | 33.5385 | 436 | 0.5668 | 0.6586 | 0.5668 | 0.7529 |
No log | 33.6923 | 438 | 0.5477 | 0.6022 | 0.5477 | 0.7401 |
No log | 33.8462 | 440 | 0.5419 | 0.6058 | 0.5419 | 0.7361 |
No log | 34.0 | 442 | 0.5446 | 0.5863 | 0.5446 | 0.7380 |
No log | 34.1538 | 444 | 0.5538 | 0.5640 | 0.5538 | 0.7442 |
No log | 34.3077 | 446 | 0.5715 | 0.5741 | 0.5715 | 0.7560 |
No log | 34.4615 | 448 | 0.5907 | 0.5855 | 0.5907 | 0.7685 |
No log | 34.6154 | 450 | 0.6047 | 0.6404 | 0.6047 | 0.7776 |
No log | 34.7692 | 452 | 0.5893 | 0.5939 | 0.5893 | 0.7676 |
No log | 34.9231 | 454 | 0.5694 | 0.5840 | 0.5694 | 0.7546 |
No log | 35.0769 | 456 | 0.5820 | 0.6581 | 0.5820 | 0.7629 |
No log | 35.2308 | 458 | 0.6111 | 0.6638 | 0.6111 | 0.7818 |
No log | 35.3846 | 460 | 0.6004 | 0.6778 | 0.6004 | 0.7749 |
No log | 35.5385 | 462 | 0.5772 | 0.6748 | 0.5772 | 0.7597 |
No log | 35.6923 | 464 | 0.5553 | 0.6460 | 0.5553 | 0.7452 |
No log | 35.8462 | 466 | 0.5711 | 0.6570 | 0.5711 | 0.7557 |
No log | 36.0 | 468 | 0.6007 | 0.6677 | 0.6007 | 0.7750 |
No log | 36.1538 | 470 | 0.5928 | 0.6835 | 0.5928 | 0.7699 |
No log | 36.3077 | 472 | 0.5695 | 0.6369 | 0.5695 | 0.7547 |
No log | 36.4615 | 474 | 0.5768 | 0.6857 | 0.5768 | 0.7595 |
No log | 36.6154 | 476 | 0.5986 | 0.6778 | 0.5986 | 0.7737 |
No log | 36.7692 | 478 | 0.5831 | 0.6811 | 0.5831 | 0.7636 |
No log | 36.9231 | 480 | 0.5484 | 0.6134 | 0.5484 | 0.7405 |
No log | 37.0769 | 482 | 0.5399 | 0.6186 | 0.5399 | 0.7348 |
No log | 37.2308 | 484 | 0.5757 | 0.6275 | 0.5757 | 0.7588 |
No log | 37.3846 | 486 | 0.5987 | 0.6257 | 0.5987 | 0.7738 |
No log | 37.5385 | 488 | 0.5804 | 0.6405 | 0.5804 | 0.7618 |
No log | 37.6923 | 490 | 0.5555 | 0.6035 | 0.5555 | 0.7453 |
No log | 37.8462 | 492 | 0.5471 | 0.5820 | 0.5471 | 0.7397 |
No log | 38.0 | 494 | 0.5355 | 0.6018 | 0.5355 | 0.7318 |
No log | 38.1538 | 496 | 0.5335 | 0.6365 | 0.5335 | 0.7304 |
No log | 38.3077 | 498 | 0.5562 | 0.6293 | 0.5562 | 0.7458 |
0.2489 | 38.4615 | 500 | 0.5705 | 0.6388 | 0.5705 | 0.7553 |
0.2489 | 38.6154 | 502 | 0.5631 | 0.6293 | 0.5631 | 0.7504 |
0.2489 | 38.7692 | 504 | 0.5685 | 0.6293 | 0.5685 | 0.7540 |
0.2489 | 38.9231 | 506 | 0.5722 | 0.6217 | 0.5722 | 0.7565 |
0.2489 | 39.0769 | 508 | 0.5633 | 0.5939 | 0.5633 | 0.7505 |
0.2489 | 39.2308 | 510 | 0.5618 | 0.6278 | 0.5618 | 0.7495 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run2_AugV5_k4_task5_organization
Base model
aubmindlab/bert-base-arabertv02