ArabicNewSplits7_FineTuningAraBERT_run3_AugV5_k17_task3_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7889
- Qwk: 0.1149
- Mse: 0.7889
- Rmse: 0.8882
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0435 | 2 | 3.5873 | 0.0048 | 3.5873 | 1.8940 |
No log | 0.0870 | 4 | 1.9188 | 0.0704 | 1.9188 | 1.3852 |
No log | 0.1304 | 6 | 1.8244 | -0.0284 | 1.8244 | 1.3507 |
No log | 0.1739 | 8 | 1.4418 | 0.0 | 1.4418 | 1.2008 |
No log | 0.2174 | 10 | 1.0361 | -0.0423 | 1.0361 | 1.0179 |
No log | 0.2609 | 12 | 0.8671 | -0.0894 | 0.8671 | 0.9312 |
No log | 0.3043 | 14 | 0.7707 | 0.0807 | 0.7707 | 0.8779 |
No log | 0.3478 | 16 | 1.0831 | 0.0282 | 1.0831 | 1.0407 |
No log | 0.3913 | 18 | 1.7604 | -0.0063 | 1.7604 | 1.3268 |
No log | 0.4348 | 20 | 1.0972 | -0.0987 | 1.0972 | 1.0475 |
No log | 0.4783 | 22 | 0.7533 | 0.0460 | 0.7533 | 0.8679 |
No log | 0.5217 | 24 | 0.8135 | -0.0711 | 0.8135 | 0.9019 |
No log | 0.5652 | 26 | 1.1733 | -0.1019 | 1.1733 | 1.0832 |
No log | 0.6087 | 28 | 1.3305 | -0.0234 | 1.3305 | 1.1535 |
No log | 0.6522 | 30 | 1.0436 | -0.0704 | 1.0436 | 1.0216 |
No log | 0.6957 | 32 | 0.7443 | -0.0035 | 0.7443 | 0.8627 |
No log | 0.7391 | 34 | 0.7116 | 0.0 | 0.7116 | 0.8435 |
No log | 0.7826 | 36 | 0.7213 | 0.0 | 0.7213 | 0.8493 |
No log | 0.8261 | 38 | 0.7959 | -0.1227 | 0.7959 | 0.8921 |
No log | 0.8696 | 40 | 1.0829 | -0.0133 | 1.0829 | 1.0406 |
No log | 0.9130 | 42 | 1.4775 | -0.0247 | 1.4775 | 1.2155 |
No log | 0.9565 | 44 | 1.5556 | 0.0 | 1.5556 | 1.2472 |
No log | 1.0 | 46 | 1.2686 | -0.0490 | 1.2686 | 1.1263 |
No log | 1.0435 | 48 | 1.0666 | -0.0457 | 1.0666 | 1.0328 |
No log | 1.0870 | 50 | 0.8191 | -0.0331 | 0.8191 | 0.9051 |
No log | 1.1304 | 52 | 0.8023 | -0.0766 | 0.8023 | 0.8957 |
No log | 1.1739 | 54 | 0.9324 | -0.0079 | 0.9324 | 0.9656 |
No log | 1.2174 | 56 | 1.1684 | -0.0359 | 1.1684 | 1.0809 |
No log | 1.2609 | 58 | 1.7981 | -0.0920 | 1.7981 | 1.3409 |
No log | 1.3043 | 60 | 1.7539 | -0.0920 | 1.7539 | 1.3243 |
No log | 1.3478 | 62 | 0.9176 | 0.0017 | 0.9176 | 0.9579 |
No log | 1.3913 | 64 | 0.7764 | -0.0695 | 0.7764 | 0.8812 |
No log | 1.4348 | 66 | 0.9244 | 0.0017 | 0.9244 | 0.9614 |
No log | 1.4783 | 68 | 1.5804 | -0.0705 | 1.5804 | 1.2571 |
No log | 1.5217 | 70 | 1.4263 | -0.0456 | 1.4263 | 1.1943 |
No log | 1.5652 | 72 | 0.9417 | 0.1064 | 0.9417 | 0.9704 |
No log | 1.6087 | 74 | 0.7224 | -0.0069 | 0.7224 | 0.8500 |
No log | 1.6522 | 76 | 0.7199 | -0.0571 | 0.7199 | 0.8485 |
No log | 1.6957 | 78 | 0.7249 | -0.0035 | 0.7249 | 0.8514 |
No log | 1.7391 | 80 | 0.8414 | 0.0512 | 0.8414 | 0.9173 |
No log | 1.7826 | 82 | 0.8989 | 0.1243 | 0.8989 | 0.9481 |
No log | 1.8261 | 84 | 0.9060 | -0.0122 | 0.9060 | 0.9518 |
No log | 1.8696 | 86 | 0.9227 | -0.1274 | 0.9227 | 0.9606 |
No log | 1.9130 | 88 | 0.9305 | -0.0923 | 0.9305 | 0.9646 |
No log | 1.9565 | 90 | 1.0267 | -0.1284 | 1.0267 | 1.0133 |
No log | 2.0 | 92 | 1.1633 | -0.1890 | 1.1633 | 1.0786 |
No log | 2.0435 | 94 | 1.4726 | -0.1575 | 1.4726 | 1.2135 |
No log | 2.0870 | 96 | 1.2558 | -0.1912 | 1.2558 | 1.1206 |
No log | 2.1304 | 98 | 0.8987 | 0.0191 | 0.8987 | 0.9480 |
No log | 2.1739 | 100 | 0.8143 | -0.0228 | 0.8143 | 0.9024 |
No log | 2.2174 | 102 | 0.7442 | -0.0125 | 0.7442 | 0.8627 |
No log | 2.2609 | 104 | 0.7495 | -0.0033 | 0.7495 | 0.8657 |
No log | 2.3043 | 106 | 1.0543 | -0.0133 | 1.0543 | 1.0268 |
No log | 2.3478 | 108 | 1.2179 | 0.0104 | 1.2179 | 1.1036 |
No log | 2.3913 | 110 | 0.8524 | 0.0639 | 0.8524 | 0.9232 |
No log | 2.4348 | 112 | 0.7952 | 0.0214 | 0.7952 | 0.8917 |
No log | 2.4783 | 114 | 0.7560 | 0.0247 | 0.7560 | 0.8695 |
No log | 2.5217 | 116 | 0.7727 | 0.0732 | 0.7727 | 0.8791 |
No log | 2.5652 | 118 | 0.7559 | 0.0303 | 0.7559 | 0.8694 |
No log | 2.6087 | 120 | 0.7508 | 0.0303 | 0.7508 | 0.8665 |
No log | 2.6522 | 122 | 0.8855 | 0.0438 | 0.8855 | 0.9410 |
No log | 2.6957 | 124 | 0.8198 | 0.1095 | 0.8198 | 0.9055 |
No log | 2.7391 | 126 | 0.7682 | -0.0612 | 0.7682 | 0.8764 |
No log | 2.7826 | 128 | 0.8063 | 0.0999 | 0.8063 | 0.8979 |
No log | 2.8261 | 130 | 0.8349 | 0.0999 | 0.8349 | 0.9137 |
No log | 2.8696 | 132 | 0.9404 | -0.0425 | 0.9404 | 0.9697 |
No log | 2.9130 | 134 | 1.1783 | -0.0961 | 1.1783 | 1.0855 |
No log | 2.9565 | 136 | 0.9274 | 0.0118 | 0.9274 | 0.9630 |
No log | 3.0 | 138 | 0.8548 | 0.0412 | 0.8548 | 0.9246 |
No log | 3.0435 | 140 | 0.8512 | -0.0113 | 0.8512 | 0.9226 |
No log | 3.0870 | 142 | 0.9879 | -0.1265 | 0.9879 | 0.9939 |
No log | 3.1304 | 144 | 0.9482 | -0.1265 | 0.9482 | 0.9737 |
No log | 3.1739 | 146 | 0.8952 | -0.0008 | 0.8952 | 0.9462 |
No log | 3.2174 | 148 | 0.9227 | 0.0346 | 0.9227 | 0.9606 |
No log | 3.2609 | 150 | 1.0265 | -0.0163 | 1.0265 | 1.0132 |
No log | 3.3043 | 152 | 1.0164 | -0.0175 | 1.0164 | 1.0081 |
No log | 3.3478 | 154 | 1.0743 | 0.0086 | 1.0743 | 1.0365 |
No log | 3.3913 | 156 | 0.8288 | -0.0351 | 0.8288 | 0.9104 |
No log | 3.4348 | 158 | 0.7343 | 0.0334 | 0.7343 | 0.8569 |
No log | 3.4783 | 160 | 0.7352 | -0.0541 | 0.7352 | 0.8574 |
No log | 3.5217 | 162 | 0.6997 | -0.0131 | 0.6997 | 0.8365 |
No log | 3.5652 | 164 | 0.8109 | 0.0953 | 0.8109 | 0.9005 |
No log | 3.6087 | 166 | 0.8117 | 0.1879 | 0.8117 | 0.9009 |
No log | 3.6522 | 168 | 0.7877 | 0.1758 | 0.7877 | 0.8875 |
No log | 3.6957 | 170 | 0.8512 | -0.0008 | 0.8512 | 0.9226 |
No log | 3.7391 | 172 | 0.8475 | 0.0016 | 0.8475 | 0.9206 |
No log | 3.7826 | 174 | 0.8418 | 0.0068 | 0.8418 | 0.9175 |
No log | 3.8261 | 176 | 0.7565 | -0.0030 | 0.7565 | 0.8698 |
No log | 3.8696 | 178 | 0.7740 | 0.0061 | 0.7740 | 0.8798 |
No log | 3.9130 | 180 | 0.8053 | 0.0628 | 0.8053 | 0.8974 |
No log | 3.9565 | 182 | 0.8480 | 0.0549 | 0.8480 | 0.9209 |
No log | 4.0 | 184 | 0.9507 | -0.0143 | 0.9507 | 0.9751 |
No log | 4.0435 | 186 | 0.8040 | 0.0714 | 0.8040 | 0.8967 |
No log | 4.0870 | 188 | 0.7675 | -0.0662 | 0.7675 | 0.8761 |
No log | 4.1304 | 190 | 0.7803 | -0.1230 | 0.7803 | 0.8833 |
No log | 4.1739 | 192 | 0.9504 | -0.0163 | 0.9504 | 0.9749 |
No log | 4.2174 | 194 | 0.9626 | -0.0182 | 0.9626 | 0.9811 |
No log | 4.2609 | 196 | 0.8247 | -0.0711 | 0.8247 | 0.9082 |
No log | 4.3043 | 198 | 0.8400 | -0.0958 | 0.8400 | 0.9165 |
No log | 4.3478 | 200 | 0.8481 | -0.1088 | 0.8481 | 0.9209 |
No log | 4.3913 | 202 | 1.0748 | -0.0518 | 1.0748 | 1.0367 |
No log | 4.4348 | 204 | 1.1033 | -0.0558 | 1.1033 | 1.0504 |
No log | 4.4783 | 206 | 0.7734 | 0.0807 | 0.7734 | 0.8794 |
No log | 4.5217 | 208 | 0.7424 | -0.0571 | 0.7424 | 0.8616 |
No log | 4.5652 | 210 | 0.7429 | -0.0551 | 0.7429 | 0.8619 |
No log | 4.6087 | 212 | 0.7014 | -0.0035 | 0.7014 | 0.8375 |
No log | 4.6522 | 214 | 0.8040 | 0.0129 | 0.8040 | 0.8966 |
No log | 4.6957 | 216 | 0.7887 | 0.0225 | 0.7887 | 0.8881 |
No log | 4.7391 | 218 | 0.7358 | -0.0591 | 0.7358 | 0.8578 |
No log | 4.7826 | 220 | 0.7814 | 0.0395 | 0.7814 | 0.8839 |
No log | 4.8261 | 222 | 0.8969 | 0.0095 | 0.8969 | 0.9470 |
No log | 4.8696 | 224 | 0.8083 | -0.0578 | 0.8083 | 0.8991 |
No log | 4.9130 | 226 | 0.8650 | -0.1033 | 0.8650 | 0.9301 |
No log | 4.9565 | 228 | 0.8281 | -0.2123 | 0.8281 | 0.9100 |
No log | 5.0 | 230 | 0.8598 | 0.0247 | 0.8598 | 0.9273 |
No log | 5.0435 | 232 | 1.0982 | 0.0182 | 1.0982 | 1.0480 |
No log | 5.0870 | 234 | 0.9737 | -0.0056 | 0.9737 | 0.9867 |
No log | 5.1304 | 236 | 0.8085 | 0.0260 | 0.8085 | 0.8992 |
No log | 5.1739 | 238 | 0.7403 | -0.0069 | 0.7403 | 0.8604 |
No log | 5.2174 | 240 | 0.7493 | -0.0101 | 0.7493 | 0.8656 |
No log | 5.2609 | 242 | 0.8990 | 0.0409 | 0.8990 | 0.9482 |
No log | 5.3043 | 244 | 0.9144 | 0.0409 | 0.9144 | 0.9563 |
No log | 5.3478 | 246 | 0.8010 | 0.1148 | 0.8010 | 0.8950 |
No log | 5.3913 | 248 | 0.8018 | -0.1659 | 0.8018 | 0.8954 |
No log | 5.4348 | 250 | 0.8543 | 0.0490 | 0.8543 | 0.9243 |
No log | 5.4783 | 252 | 1.1029 | 0.0839 | 1.1029 | 1.0502 |
No log | 5.5217 | 254 | 1.0249 | 0.0609 | 1.0249 | 1.0124 |
No log | 5.5652 | 256 | 0.8457 | 0.0047 | 0.8457 | 0.9196 |
No log | 5.6087 | 258 | 0.8747 | -0.0820 | 0.8747 | 0.9353 |
No log | 5.6522 | 260 | 0.8618 | -0.0761 | 0.8618 | 0.9283 |
No log | 5.6957 | 262 | 0.8435 | -0.2443 | 0.8435 | 0.9184 |
No log | 5.7391 | 264 | 0.7586 | -0.1067 | 0.7586 | 0.8710 |
No log | 5.7826 | 266 | 0.7001 | -0.0035 | 0.7001 | 0.8367 |
No log | 5.8261 | 268 | 1.0196 | -0.0628 | 1.0196 | 1.0097 |
No log | 5.8696 | 270 | 1.2339 | -0.0479 | 1.2339 | 1.1108 |
No log | 5.9130 | 272 | 1.0318 | -0.0992 | 1.0318 | 1.0158 |
No log | 5.9565 | 274 | 0.7545 | 0.1318 | 0.7545 | 0.8686 |
No log | 6.0 | 276 | 0.6850 | 0.0 | 0.6850 | 0.8277 |
No log | 6.0435 | 278 | 0.6864 | 0.0 | 0.6864 | 0.8285 |
No log | 6.0870 | 280 | 0.7182 | 0.1691 | 0.7182 | 0.8475 |
No log | 6.1304 | 282 | 0.8109 | 0.1605 | 0.8109 | 0.9005 |
No log | 6.1739 | 284 | 0.7738 | 0.1836 | 0.7738 | 0.8797 |
No log | 6.2174 | 286 | 0.7303 | 0.1199 | 0.7303 | 0.8546 |
No log | 6.2609 | 288 | 0.7323 | 0.0513 | 0.7323 | 0.8557 |
No log | 6.3043 | 290 | 0.7253 | 0.0471 | 0.7253 | 0.8516 |
No log | 6.3478 | 292 | 0.7332 | 0.0976 | 0.7332 | 0.8562 |
No log | 6.3913 | 294 | 0.7295 | 0.1196 | 0.7295 | 0.8541 |
No log | 6.4348 | 296 | 0.7287 | 0.1001 | 0.7287 | 0.8536 |
No log | 6.4783 | 298 | 0.7690 | 0.0549 | 0.7690 | 0.8769 |
No log | 6.5217 | 300 | 0.7045 | 0.1379 | 0.7045 | 0.8393 |
No log | 6.5652 | 302 | 0.7005 | -0.0551 | 0.7005 | 0.8370 |
No log | 6.6087 | 304 | 0.7167 | -0.0499 | 0.7167 | 0.8466 |
No log | 6.6522 | 306 | 0.7104 | -0.0035 | 0.7104 | 0.8428 |
No log | 6.6957 | 308 | 0.8425 | -0.0474 | 0.8425 | 0.9179 |
No log | 6.7391 | 310 | 0.9286 | -0.0101 | 0.9286 | 0.9636 |
No log | 6.7826 | 312 | 0.9496 | -0.0101 | 0.9496 | 0.9745 |
No log | 6.8261 | 314 | 0.9529 | -0.0101 | 0.9529 | 0.9762 |
No log | 6.8696 | 316 | 1.0668 | 0.0175 | 1.0668 | 1.0328 |
No log | 6.9130 | 318 | 1.3717 | -0.0982 | 1.3717 | 1.1712 |
No log | 6.9565 | 320 | 1.1519 | 0.0065 | 1.1519 | 1.0733 |
No log | 7.0 | 322 | 0.8878 | -0.0359 | 0.8878 | 0.9422 |
No log | 7.0435 | 324 | 0.8133 | 0.0 | 0.8133 | 0.9018 |
No log | 7.0870 | 326 | 0.7702 | 0.0918 | 0.7702 | 0.8776 |
No log | 7.1304 | 328 | 0.7767 | 0.1506 | 0.7767 | 0.8813 |
No log | 7.1739 | 330 | 0.7427 | 0.1691 | 0.7427 | 0.8618 |
No log | 7.2174 | 332 | 0.7351 | 0.1691 | 0.7351 | 0.8574 |
No log | 7.2609 | 334 | 0.7359 | 0.1691 | 0.7359 | 0.8579 |
No log | 7.3043 | 336 | 0.7475 | 0.2034 | 0.7475 | 0.8646 |
No log | 7.3478 | 338 | 0.8393 | -0.0163 | 0.8393 | 0.9161 |
No log | 7.3913 | 340 | 0.8151 | 0.0346 | 0.8151 | 0.9028 |
No log | 7.4348 | 342 | 0.7175 | 0.1565 | 0.7175 | 0.8470 |
No log | 7.4783 | 344 | 0.7181 | 0.1202 | 0.7181 | 0.8474 |
No log | 7.5217 | 346 | 0.8250 | 0.2015 | 0.8250 | 0.9083 |
No log | 7.5652 | 348 | 0.9581 | -0.0218 | 0.9581 | 0.9789 |
No log | 7.6087 | 350 | 0.8565 | 0.0676 | 0.8565 | 0.9255 |
No log | 7.6522 | 352 | 0.7350 | -0.1040 | 0.7350 | 0.8573 |
No log | 7.6957 | 354 | 0.7645 | -0.0774 | 0.7645 | 0.8744 |
No log | 7.7391 | 356 | 0.7300 | -0.0152 | 0.7300 | 0.8544 |
No log | 7.7826 | 358 | 0.7963 | 0.2077 | 0.7963 | 0.8923 |
No log | 7.8261 | 360 | 1.0645 | -0.0668 | 1.0645 | 1.0317 |
No log | 7.8696 | 362 | 1.0784 | -0.0677 | 1.0784 | 1.0385 |
No log | 7.9130 | 364 | 0.9350 | -0.0236 | 0.9350 | 0.9669 |
No log | 7.9565 | 366 | 0.8205 | 0.0748 | 0.8205 | 0.9058 |
No log | 8.0 | 368 | 0.8092 | 0.0786 | 0.8092 | 0.8995 |
No log | 8.0435 | 370 | 0.8549 | 0.0609 | 0.8549 | 0.9246 |
No log | 8.0870 | 372 | 0.9024 | 0.0182 | 0.9025 | 0.9500 |
No log | 8.1304 | 374 | 0.8042 | 0.1107 | 0.8042 | 0.8968 |
No log | 8.1739 | 376 | 0.7142 | 0.0807 | 0.7142 | 0.8451 |
No log | 8.2174 | 378 | 0.7395 | 0.1627 | 0.7395 | 0.8600 |
No log | 8.2609 | 380 | 0.8924 | 0.0545 | 0.8924 | 0.9446 |
No log | 8.3043 | 382 | 0.9861 | 0.0378 | 0.9861 | 0.9930 |
No log | 8.3478 | 384 | 1.0210 | -0.0345 | 1.0210 | 1.0104 |
No log | 8.3913 | 386 | 1.0137 | -0.0331 | 1.0137 | 1.0068 |
No log | 8.4348 | 388 | 1.0010 | -0.0912 | 1.0010 | 1.0005 |
No log | 8.4783 | 390 | 1.0671 | -0.0618 | 1.0671 | 1.0330 |
No log | 8.5217 | 392 | 1.1011 | -0.0345 | 1.1011 | 1.0493 |
No log | 8.5652 | 394 | 1.0005 | -0.0301 | 1.0005 | 1.0002 |
No log | 8.6087 | 396 | 0.8752 | 0.1788 | 0.8752 | 0.9355 |
No log | 8.6522 | 398 | 0.7706 | 0.1506 | 0.7706 | 0.8779 |
No log | 8.6957 | 400 | 0.8134 | 0.1553 | 0.8134 | 0.9019 |
No log | 8.7391 | 402 | 0.8592 | 0.0984 | 0.8592 | 0.9269 |
No log | 8.7826 | 404 | 0.8972 | 0.0182 | 0.8972 | 0.9472 |
No log | 8.8261 | 406 | 0.9521 | 0.0089 | 0.9521 | 0.9757 |
No log | 8.8696 | 408 | 0.8228 | 0.1243 | 0.8228 | 0.9071 |
No log | 8.9130 | 410 | 0.7515 | -0.0215 | 0.7515 | 0.8669 |
No log | 8.9565 | 412 | 0.8066 | 0.0909 | 0.8066 | 0.8981 |
No log | 9.0 | 414 | 0.8301 | -0.0079 | 0.8301 | 0.9111 |
No log | 9.0435 | 416 | 0.8089 | 0.1243 | 0.8089 | 0.8994 |
No log | 9.0870 | 418 | 0.7696 | 0.0953 | 0.7696 | 0.8773 |
No log | 9.1304 | 420 | 0.7891 | 0.0867 | 0.7891 | 0.8883 |
No log | 9.1739 | 422 | 0.8571 | 0.0984 | 0.8571 | 0.9258 |
No log | 9.2174 | 424 | 0.7560 | 0.0953 | 0.7560 | 0.8695 |
No log | 9.2609 | 426 | 0.7386 | 0.0159 | 0.7386 | 0.8594 |
No log | 9.3043 | 428 | 0.8237 | 0.1955 | 0.8237 | 0.9076 |
No log | 9.3478 | 430 | 0.9468 | 0.0157 | 0.9468 | 0.9730 |
No log | 9.3913 | 432 | 0.9488 | 0.0134 | 0.9488 | 0.9741 |
No log | 9.4348 | 434 | 0.8932 | 0.0182 | 0.8932 | 0.9451 |
No log | 9.4783 | 436 | 0.8048 | 0.0831 | 0.8048 | 0.8971 |
No log | 9.5217 | 438 | 0.7551 | 0.1423 | 0.7551 | 0.8689 |
No log | 9.5652 | 440 | 0.7451 | 0.1463 | 0.7451 | 0.8632 |
No log | 9.6087 | 442 | 0.7452 | 0.0600 | 0.7452 | 0.8633 |
No log | 9.6522 | 444 | 0.7672 | 0.1243 | 0.7672 | 0.8759 |
No log | 9.6957 | 446 | 0.7510 | 0.1342 | 0.7510 | 0.8666 |
No log | 9.7391 | 448 | 0.7329 | 0.1965 | 0.7329 | 0.8561 |
No log | 9.7826 | 450 | 0.7370 | 0.1965 | 0.7370 | 0.8585 |
No log | 9.8261 | 452 | 0.7364 | 0.0282 | 0.7364 | 0.8581 |
No log | 9.8696 | 454 | 0.7415 | -0.0033 | 0.7415 | 0.8611 |
No log | 9.9130 | 456 | 0.7648 | -0.0033 | 0.7648 | 0.8745 |
No log | 9.9565 | 458 | 0.7846 | -0.0096 | 0.7846 | 0.8858 |
No log | 10.0 | 460 | 0.8412 | -0.0336 | 0.8412 | 0.9172 |
No log | 10.0435 | 462 | 0.9978 | -0.0606 | 0.9978 | 0.9989 |
No log | 10.0870 | 464 | 1.0237 | -0.0628 | 1.0237 | 1.0118 |
No log | 10.1304 | 466 | 0.9195 | 0.0207 | 0.9195 | 0.9589 |
No log | 10.1739 | 468 | 0.7802 | 0.0723 | 0.7802 | 0.8833 |
No log | 10.2174 | 470 | 0.7628 | 0.1433 | 0.7628 | 0.8734 |
No log | 10.2609 | 472 | 0.7975 | 0.0152 | 0.7975 | 0.8930 |
No log | 10.3043 | 474 | 0.9184 | 0.0250 | 0.9184 | 0.9583 |
No log | 10.3478 | 476 | 1.0074 | 0.0404 | 1.0074 | 1.0037 |
No log | 10.3913 | 478 | 0.9121 | 0.0946 | 0.9121 | 0.9551 |
No log | 10.4348 | 480 | 0.7947 | 0.0456 | 0.7947 | 0.8915 |
No log | 10.4783 | 482 | 0.8195 | 0.0826 | 0.8195 | 0.9053 |
No log | 10.5217 | 484 | 0.9745 | 0.0431 | 0.9745 | 0.9872 |
No log | 10.5652 | 486 | 1.0324 | 0.0026 | 1.0324 | 1.0161 |
No log | 10.6087 | 488 | 1.0126 | -0.0301 | 1.0126 | 1.0063 |
No log | 10.6522 | 490 | 0.9164 | 0.0486 | 0.9164 | 0.9573 |
No log | 10.6957 | 492 | 0.7784 | 0.1716 | 0.7784 | 0.8823 |
No log | 10.7391 | 494 | 0.7052 | 0.0964 | 0.7052 | 0.8397 |
No log | 10.7826 | 496 | 0.6874 | 0.1021 | 0.6874 | 0.8291 |
No log | 10.8261 | 498 | 0.7025 | 0.1758 | 0.7025 | 0.8382 |
0.3421 | 10.8696 | 500 | 0.8111 | 0.1406 | 0.8111 | 0.9006 |
0.3421 | 10.9130 | 502 | 0.8919 | 0.0458 | 0.8919 | 0.9444 |
0.3421 | 10.9565 | 504 | 0.8849 | 0.1316 | 0.8849 | 0.9407 |
0.3421 | 11.0 | 506 | 0.7781 | 0.0793 | 0.7781 | 0.8821 |
0.3421 | 11.0435 | 508 | 0.7500 | 0.0831 | 0.7500 | 0.8660 |
0.3421 | 11.0870 | 510 | 0.7889 | 0.1149 | 0.7889 | 0.8882 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 7
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/ArabicNewSplits7_FineTuningAraBERT_run3_AugV5_k17_task3_organization
Base model
aubmindlab/bert-base-arabertv02