ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k9_task1_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8098
- Qwk: 0.7117
- Mse: 0.8098
- Rmse: 0.8999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0294 | 2 | 7.0395 | 0.0179 | 7.0395 | 2.6532 |
No log | 0.0588 | 4 | 5.1483 | 0.0606 | 5.1483 | 2.2690 |
No log | 0.0882 | 6 | 3.0370 | 0.0848 | 3.0370 | 1.7427 |
No log | 0.1176 | 8 | 2.7951 | 0.0662 | 2.7951 | 1.6719 |
No log | 0.1471 | 10 | 2.2571 | 0.1702 | 2.2571 | 1.5024 |
No log | 0.1765 | 12 | 1.8763 | 0.2982 | 1.8763 | 1.3698 |
No log | 0.2059 | 14 | 1.9248 | 0.2075 | 1.9248 | 1.3874 |
No log | 0.2353 | 16 | 1.7585 | 0.1143 | 1.7585 | 1.3261 |
No log | 0.2647 | 18 | 1.8330 | 0.1524 | 1.8330 | 1.3539 |
No log | 0.2941 | 20 | 2.1825 | 0.1094 | 2.1825 | 1.4773 |
No log | 0.3235 | 22 | 2.2130 | 0.1185 | 2.2130 | 1.4876 |
No log | 0.3529 | 24 | 1.8403 | 0.1951 | 1.8403 | 1.3566 |
No log | 0.3824 | 26 | 1.3352 | 0.3604 | 1.3352 | 1.1555 |
No log | 0.4118 | 28 | 1.1838 | 0.4874 | 1.1838 | 1.0880 |
No log | 0.4412 | 30 | 1.1087 | 0.4793 | 1.1087 | 1.0530 |
No log | 0.4706 | 32 | 1.0324 | 0.5528 | 1.0324 | 1.0161 |
No log | 0.5 | 34 | 0.9736 | 0.5000 | 0.9736 | 0.9867 |
No log | 0.5294 | 36 | 0.9341 | 0.5714 | 0.9341 | 0.9665 |
No log | 0.5588 | 38 | 1.2072 | 0.5286 | 1.2072 | 1.0987 |
No log | 0.5882 | 40 | 1.3235 | 0.5070 | 1.3235 | 1.1504 |
No log | 0.6176 | 42 | 1.0669 | 0.5401 | 1.0669 | 1.0329 |
No log | 0.6471 | 44 | 1.0482 | 0.5507 | 1.0482 | 1.0238 |
No log | 0.6765 | 46 | 0.9463 | 0.6286 | 0.9463 | 0.9728 |
No log | 0.7059 | 48 | 0.7672 | 0.7172 | 0.7672 | 0.8759 |
No log | 0.7353 | 50 | 0.7751 | 0.6853 | 0.7751 | 0.8804 |
No log | 0.7647 | 52 | 0.7610 | 0.7034 | 0.7610 | 0.8724 |
No log | 0.7941 | 54 | 0.7514 | 0.6901 | 0.7514 | 0.8668 |
No log | 0.8235 | 56 | 0.9088 | 0.6713 | 0.9088 | 0.9533 |
No log | 0.8529 | 58 | 0.8455 | 0.6383 | 0.8455 | 0.9195 |
No log | 0.8824 | 60 | 0.7790 | 0.7114 | 0.7790 | 0.8826 |
No log | 0.9118 | 62 | 0.7595 | 0.6712 | 0.7595 | 0.8715 |
No log | 0.9412 | 64 | 0.7645 | 0.6434 | 0.7645 | 0.8744 |
No log | 0.9706 | 66 | 0.7649 | 0.6759 | 0.7649 | 0.8746 |
No log | 1.0 | 68 | 0.7557 | 0.6974 | 0.7557 | 0.8693 |
No log | 1.0294 | 70 | 0.7233 | 0.6923 | 0.7233 | 0.8505 |
No log | 1.0588 | 72 | 0.7422 | 0.7205 | 0.7422 | 0.8615 |
No log | 1.0882 | 74 | 0.7672 | 0.6923 | 0.7672 | 0.8759 |
No log | 1.1176 | 76 | 0.7022 | 0.7261 | 0.7022 | 0.8379 |
No log | 1.1471 | 78 | 0.7780 | 0.7261 | 0.7780 | 0.8821 |
No log | 1.1765 | 80 | 0.7394 | 0.7273 | 0.7394 | 0.8599 |
No log | 1.2059 | 82 | 0.6291 | 0.7285 | 0.6291 | 0.7931 |
No log | 1.2353 | 84 | 0.6166 | 0.7702 | 0.6166 | 0.7852 |
No log | 1.2647 | 86 | 0.5484 | 0.8049 | 0.5484 | 0.7405 |
No log | 1.2941 | 88 | 0.5229 | 0.8235 | 0.5229 | 0.7231 |
No log | 1.3235 | 90 | 0.6760 | 0.7935 | 0.6760 | 0.8222 |
No log | 1.3529 | 92 | 0.7032 | 0.7766 | 0.7032 | 0.8386 |
No log | 1.3824 | 94 | 0.7297 | 0.7853 | 0.7297 | 0.8542 |
No log | 1.4118 | 96 | 0.6629 | 0.7935 | 0.6629 | 0.8142 |
No log | 1.4412 | 98 | 0.5202 | 0.8421 | 0.5202 | 0.7213 |
No log | 1.4706 | 100 | 0.5782 | 0.8144 | 0.5782 | 0.7604 |
No log | 1.5 | 102 | 0.6131 | 0.7853 | 0.6131 | 0.7830 |
No log | 1.5294 | 104 | 0.8951 | 0.7166 | 0.8951 | 0.9461 |
No log | 1.5588 | 106 | 0.8565 | 0.7514 | 0.8565 | 0.9255 |
No log | 1.5882 | 108 | 0.5821 | 0.7742 | 0.5821 | 0.7629 |
No log | 1.6176 | 110 | 0.6736 | 0.7671 | 0.6736 | 0.8207 |
No log | 1.6471 | 112 | 0.5505 | 0.8077 | 0.5505 | 0.7420 |
No log | 1.6765 | 114 | 0.6847 | 0.7607 | 0.6847 | 0.8275 |
No log | 1.7059 | 116 | 0.5990 | 0.7950 | 0.5990 | 0.7739 |
No log | 1.7353 | 118 | 0.5772 | 0.8050 | 0.5772 | 0.7597 |
No log | 1.7647 | 120 | 0.7171 | 0.76 | 0.7171 | 0.8468 |
No log | 1.7941 | 122 | 0.5153 | 0.8372 | 0.5153 | 0.7178 |
No log | 1.8235 | 124 | 0.7707 | 0.7668 | 0.7707 | 0.8779 |
No log | 1.8529 | 126 | 1.0879 | 0.6424 | 1.0879 | 1.0430 |
No log | 1.8824 | 128 | 1.1616 | 0.6104 | 1.1616 | 1.0778 |
No log | 1.9118 | 130 | 0.9057 | 0.6914 | 0.9057 | 0.9517 |
No log | 1.9412 | 132 | 0.5379 | 0.8284 | 0.5379 | 0.7334 |
No log | 1.9706 | 134 | 0.4741 | 0.8415 | 0.4741 | 0.6886 |
No log | 2.0 | 136 | 0.5138 | 0.8176 | 0.5138 | 0.7168 |
No log | 2.0294 | 138 | 0.5889 | 0.7973 | 0.5889 | 0.7674 |
No log | 2.0588 | 140 | 0.7011 | 0.6763 | 0.7011 | 0.8373 |
No log | 2.0882 | 142 | 0.7792 | 0.6620 | 0.7792 | 0.8827 |
No log | 2.1176 | 144 | 0.7033 | 0.7027 | 0.7033 | 0.8386 |
No log | 2.1471 | 146 | 0.5803 | 0.7949 | 0.5803 | 0.7618 |
No log | 2.1765 | 148 | 0.5704 | 0.7843 | 0.5704 | 0.7552 |
No log | 2.2059 | 150 | 0.6696 | 0.7547 | 0.6696 | 0.8183 |
No log | 2.2353 | 152 | 0.7605 | 0.7647 | 0.7605 | 0.8721 |
No log | 2.2647 | 154 | 0.7006 | 0.7758 | 0.7006 | 0.8370 |
No log | 2.2941 | 156 | 0.6253 | 0.7742 | 0.6253 | 0.7907 |
No log | 2.3235 | 158 | 0.5613 | 0.7763 | 0.5613 | 0.7492 |
No log | 2.3529 | 160 | 0.5788 | 0.7632 | 0.5788 | 0.7608 |
No log | 2.3824 | 162 | 0.6759 | 0.7848 | 0.6759 | 0.8222 |
No log | 2.4118 | 164 | 0.7429 | 0.7403 | 0.7429 | 0.8619 |
No log | 2.4412 | 166 | 0.6738 | 0.7397 | 0.6738 | 0.8209 |
No log | 2.4706 | 168 | 0.6230 | 0.7324 | 0.6230 | 0.7893 |
No log | 2.5 | 170 | 0.6336 | 0.7273 | 0.6336 | 0.7960 |
No log | 2.5294 | 172 | 0.7020 | 0.7564 | 0.7020 | 0.8379 |
No log | 2.5588 | 174 | 0.9805 | 0.7135 | 0.9805 | 0.9902 |
No log | 2.5882 | 176 | 0.9088 | 0.7143 | 0.9088 | 0.9533 |
No log | 2.6176 | 178 | 0.7490 | 0.7374 | 0.7490 | 0.8655 |
No log | 2.6471 | 180 | 0.7048 | 0.7362 | 0.7048 | 0.8395 |
No log | 2.6765 | 182 | 0.7408 | 0.7226 | 0.7408 | 0.8607 |
No log | 2.7059 | 184 | 0.8208 | 0.6887 | 0.8208 | 0.9060 |
No log | 2.7353 | 186 | 0.8768 | 0.72 | 0.8768 | 0.9364 |
No log | 2.7647 | 188 | 0.8265 | 0.7075 | 0.8265 | 0.9091 |
No log | 2.7941 | 190 | 0.6941 | 0.7310 | 0.6941 | 0.8331 |
No log | 2.8235 | 192 | 0.6287 | 0.7397 | 0.6287 | 0.7929 |
No log | 2.8529 | 194 | 0.5668 | 0.7871 | 0.5668 | 0.7528 |
No log | 2.8824 | 196 | 0.5075 | 0.8050 | 0.5075 | 0.7124 |
No log | 2.9118 | 198 | 0.5244 | 0.8324 | 0.5244 | 0.7242 |
No log | 2.9412 | 200 | 0.5201 | 0.8256 | 0.5201 | 0.7211 |
No log | 2.9706 | 202 | 0.4614 | 0.8434 | 0.4614 | 0.6793 |
No log | 3.0 | 204 | 0.5550 | 0.8242 | 0.5550 | 0.7450 |
No log | 3.0294 | 206 | 0.6634 | 0.7889 | 0.6634 | 0.8145 |
No log | 3.0588 | 208 | 0.6471 | 0.7636 | 0.6471 | 0.8044 |
No log | 3.0882 | 210 | 0.5344 | 0.7875 | 0.5344 | 0.7310 |
No log | 3.1176 | 212 | 0.5137 | 0.8129 | 0.5137 | 0.7168 |
No log | 3.1471 | 214 | 0.5478 | 0.7875 | 0.5478 | 0.7401 |
No log | 3.1765 | 216 | 0.5731 | 0.7875 | 0.5731 | 0.7570 |
No log | 3.2059 | 218 | 0.6063 | 0.7625 | 0.6063 | 0.7787 |
No log | 3.2353 | 220 | 0.6328 | 0.7730 | 0.6328 | 0.7955 |
No log | 3.2647 | 222 | 0.7190 | 0.7760 | 0.7190 | 0.8480 |
No log | 3.2941 | 224 | 0.7115 | 0.7760 | 0.7115 | 0.8435 |
No log | 3.3235 | 226 | 0.5232 | 0.8313 | 0.5232 | 0.7234 |
No log | 3.3529 | 228 | 0.4758 | 0.8293 | 0.4758 | 0.6898 |
No log | 3.3824 | 230 | 0.5039 | 0.8272 | 0.5039 | 0.7099 |
No log | 3.4118 | 232 | 0.5216 | 0.7919 | 0.5216 | 0.7223 |
No log | 3.4412 | 234 | 0.6860 | 0.7436 | 0.6860 | 0.8282 |
No log | 3.4706 | 236 | 0.8256 | 0.7425 | 0.8256 | 0.9086 |
No log | 3.5 | 238 | 0.6921 | 0.7296 | 0.6921 | 0.8319 |
No log | 3.5294 | 240 | 0.5410 | 0.8052 | 0.5410 | 0.7356 |
No log | 3.5588 | 242 | 0.5334 | 0.8101 | 0.5334 | 0.7303 |
No log | 3.5882 | 244 | 0.5598 | 0.8364 | 0.5598 | 0.7482 |
No log | 3.6176 | 246 | 0.6231 | 0.7784 | 0.6231 | 0.7894 |
No log | 3.6471 | 248 | 0.7352 | 0.7425 | 0.7352 | 0.8574 |
No log | 3.6765 | 250 | 0.9671 | 0.6882 | 0.9671 | 0.9834 |
No log | 3.7059 | 252 | 1.0205 | 0.6882 | 1.0205 | 1.0102 |
No log | 3.7353 | 254 | 0.7955 | 0.7308 | 0.7955 | 0.8919 |
No log | 3.7647 | 256 | 0.6052 | 0.7448 | 0.6052 | 0.7779 |
No log | 3.7941 | 258 | 0.5792 | 0.7838 | 0.5792 | 0.7610 |
No log | 3.8235 | 260 | 0.6250 | 0.7532 | 0.6250 | 0.7906 |
No log | 3.8529 | 262 | 0.6739 | 0.7805 | 0.6739 | 0.8209 |
No log | 3.8824 | 264 | 0.6612 | 0.7879 | 0.6612 | 0.8131 |
No log | 3.9118 | 266 | 0.5659 | 0.8263 | 0.5659 | 0.7523 |
No log | 3.9412 | 268 | 0.6186 | 0.8 | 0.6186 | 0.7865 |
No log | 3.9706 | 270 | 0.5902 | 0.7952 | 0.5902 | 0.7682 |
No log | 4.0 | 272 | 0.5388 | 0.8521 | 0.5388 | 0.7340 |
No log | 4.0294 | 274 | 0.4640 | 0.8302 | 0.4640 | 0.6812 |
No log | 4.0588 | 276 | 0.4772 | 0.8025 | 0.4772 | 0.6908 |
No log | 4.0882 | 278 | 0.4724 | 0.8302 | 0.4724 | 0.6873 |
No log | 4.1176 | 280 | 0.4595 | 0.8395 | 0.4595 | 0.6778 |
No log | 4.1471 | 282 | 0.4621 | 0.8383 | 0.4621 | 0.6798 |
No log | 4.1765 | 284 | 0.4570 | 0.8488 | 0.4570 | 0.6760 |
No log | 4.2059 | 286 | 0.4711 | 0.8621 | 0.4711 | 0.6864 |
No log | 4.2353 | 288 | 0.5541 | 0.8391 | 0.5541 | 0.7444 |
No log | 4.2647 | 290 | 0.5272 | 0.8538 | 0.5272 | 0.7261 |
No log | 4.2941 | 292 | 0.4590 | 0.8428 | 0.4590 | 0.6775 |
No log | 4.3235 | 294 | 0.5050 | 0.8258 | 0.5050 | 0.7106 |
No log | 4.3529 | 296 | 0.5188 | 0.8158 | 0.5188 | 0.7203 |
No log | 4.3824 | 298 | 0.5158 | 0.8258 | 0.5158 | 0.7182 |
No log | 4.4118 | 300 | 0.6153 | 0.7582 | 0.6153 | 0.7844 |
No log | 4.4412 | 302 | 0.7424 | 0.7308 | 0.7424 | 0.8616 |
No log | 4.4706 | 304 | 0.7378 | 0.7451 | 0.7378 | 0.8590 |
No log | 4.5 | 306 | 0.7729 | 0.7152 | 0.7729 | 0.8792 |
No log | 4.5294 | 308 | 0.9114 | 0.6962 | 0.9114 | 0.9547 |
No log | 4.5588 | 310 | 0.9323 | 0.6918 | 0.9323 | 0.9655 |
No log | 4.5882 | 312 | 0.8096 | 0.6962 | 0.8096 | 0.8998 |
No log | 4.6176 | 314 | 0.6126 | 0.7651 | 0.6126 | 0.7827 |
No log | 4.6471 | 316 | 0.5100 | 0.8125 | 0.5100 | 0.7141 |
No log | 4.6765 | 318 | 0.4978 | 0.8324 | 0.4978 | 0.7055 |
No log | 4.7059 | 320 | 0.6458 | 0.8247 | 0.6458 | 0.8036 |
No log | 4.7353 | 322 | 0.8179 | 0.76 | 0.8179 | 0.9044 |
No log | 4.7647 | 324 | 0.7867 | 0.7526 | 0.7867 | 0.8870 |
No log | 4.7941 | 326 | 0.5448 | 0.8398 | 0.5448 | 0.7381 |
No log | 4.8235 | 328 | 0.4714 | 0.8293 | 0.4714 | 0.6866 |
No log | 4.8529 | 330 | 0.5428 | 0.7821 | 0.5428 | 0.7368 |
No log | 4.8824 | 332 | 0.5169 | 0.8052 | 0.5169 | 0.7190 |
No log | 4.9118 | 334 | 0.5558 | 0.8105 | 0.5558 | 0.7455 |
No log | 4.9412 | 336 | 0.8226 | 0.7176 | 0.8226 | 0.9070 |
No log | 4.9706 | 338 | 0.8923 | 0.6857 | 0.8923 | 0.9446 |
No log | 5.0 | 340 | 0.7822 | 0.7117 | 0.7822 | 0.8844 |
No log | 5.0294 | 342 | 0.7511 | 0.7172 | 0.7511 | 0.8667 |
No log | 5.0588 | 344 | 0.7978 | 0.7 | 0.7978 | 0.8932 |
No log | 5.0882 | 346 | 0.8963 | 0.6759 | 0.8963 | 0.9467 |
No log | 5.1176 | 348 | 0.9122 | 0.6711 | 0.9122 | 0.9551 |
No log | 5.1471 | 350 | 0.7902 | 0.6906 | 0.7902 | 0.8889 |
No log | 5.1765 | 352 | 0.6873 | 0.7432 | 0.6873 | 0.8290 |
No log | 5.2059 | 354 | 0.5766 | 0.7895 | 0.5766 | 0.7593 |
No log | 5.2353 | 356 | 0.5382 | 0.8 | 0.5382 | 0.7336 |
No log | 5.2647 | 358 | 0.5374 | 0.8101 | 0.5374 | 0.7331 |
No log | 5.2941 | 360 | 0.5512 | 0.8101 | 0.5512 | 0.7425 |
No log | 5.3235 | 362 | 0.6432 | 0.7811 | 0.6432 | 0.8020 |
No log | 5.3529 | 364 | 0.7042 | 0.7647 | 0.7042 | 0.8392 |
No log | 5.3824 | 366 | 0.7441 | 0.7470 | 0.7441 | 0.8626 |
No log | 5.4118 | 368 | 0.7178 | 0.7261 | 0.7178 | 0.8472 |
No log | 5.4412 | 370 | 0.7364 | 0.7222 | 0.7364 | 0.8581 |
No log | 5.4706 | 372 | 0.7520 | 0.7101 | 0.7520 | 0.8672 |
No log | 5.5 | 374 | 0.7868 | 0.6993 | 0.7868 | 0.8870 |
No log | 5.5294 | 376 | 0.7768 | 0.7211 | 0.7768 | 0.8814 |
No log | 5.5588 | 378 | 0.8252 | 0.7081 | 0.8252 | 0.9084 |
No log | 5.5882 | 380 | 0.8301 | 0.7195 | 0.8301 | 0.9111 |
No log | 5.6176 | 382 | 0.8481 | 0.7037 | 0.8481 | 0.9209 |
No log | 5.6471 | 384 | 0.6918 | 0.7383 | 0.6918 | 0.8317 |
No log | 5.6765 | 386 | 0.5629 | 0.7536 | 0.5629 | 0.7503 |
No log | 5.7059 | 388 | 0.5389 | 0.7917 | 0.5389 | 0.7341 |
No log | 5.7353 | 390 | 0.5165 | 0.8108 | 0.5165 | 0.7187 |
No log | 5.7647 | 392 | 0.5137 | 0.8447 | 0.5137 | 0.7167 |
No log | 5.7941 | 394 | 0.4778 | 0.8485 | 0.4778 | 0.6913 |
No log | 5.8235 | 396 | 0.4482 | 0.8415 | 0.4482 | 0.6694 |
No log | 5.8529 | 398 | 0.4501 | 0.8153 | 0.4501 | 0.6709 |
No log | 5.8824 | 400 | 0.4594 | 0.8153 | 0.4594 | 0.6778 |
No log | 5.9118 | 402 | 0.4939 | 0.8375 | 0.4939 | 0.7028 |
No log | 5.9412 | 404 | 0.5036 | 0.8375 | 0.5036 | 0.7096 |
No log | 5.9706 | 406 | 0.5284 | 0.8075 | 0.5284 | 0.7269 |
No log | 6.0 | 408 | 0.5707 | 0.7949 | 0.5707 | 0.7554 |
No log | 6.0294 | 410 | 0.6259 | 0.7568 | 0.6259 | 0.7911 |
No log | 6.0588 | 412 | 0.6509 | 0.7568 | 0.6509 | 0.8068 |
No log | 6.0882 | 414 | 0.6096 | 0.7397 | 0.6096 | 0.7808 |
No log | 6.1176 | 416 | 0.5567 | 0.7895 | 0.5567 | 0.7461 |
No log | 6.1471 | 418 | 0.5417 | 0.8153 | 0.5417 | 0.7360 |
No log | 6.1765 | 420 | 0.5425 | 0.8 | 0.5425 | 0.7366 |
No log | 6.2059 | 422 | 0.5758 | 0.8372 | 0.5758 | 0.7588 |
No log | 6.2353 | 424 | 0.7540 | 0.7640 | 0.7540 | 0.8683 |
No log | 6.2647 | 426 | 0.8285 | 0.7168 | 0.8285 | 0.9102 |
No log | 6.2941 | 428 | 0.7435 | 0.7394 | 0.7435 | 0.8622 |
No log | 6.3235 | 430 | 0.6127 | 0.7552 | 0.6127 | 0.7827 |
No log | 6.3529 | 432 | 0.5628 | 0.7808 | 0.5628 | 0.7502 |
No log | 6.3824 | 434 | 0.5624 | 0.7651 | 0.5624 | 0.7500 |
No log | 6.4118 | 436 | 0.5868 | 0.7867 | 0.5868 | 0.7660 |
No log | 6.4412 | 438 | 0.6609 | 0.7561 | 0.6609 | 0.8130 |
No log | 6.4706 | 440 | 0.6473 | 0.7468 | 0.6473 | 0.8046 |
No log | 6.5 | 442 | 0.6062 | 0.7568 | 0.6062 | 0.7786 |
No log | 6.5294 | 444 | 0.5987 | 0.8133 | 0.5987 | 0.7738 |
No log | 6.5588 | 446 | 0.5881 | 0.8289 | 0.5881 | 0.7669 |
No log | 6.5882 | 448 | 0.5570 | 0.7867 | 0.5570 | 0.7464 |
No log | 6.6176 | 450 | 0.6182 | 0.7857 | 0.6182 | 0.7863 |
No log | 6.6471 | 452 | 0.7112 | 0.7342 | 0.7112 | 0.8433 |
No log | 6.6765 | 454 | 0.6818 | 0.7383 | 0.6818 | 0.8257 |
No log | 6.7059 | 456 | 0.7311 | 0.7222 | 0.7311 | 0.8550 |
No log | 6.7353 | 458 | 0.7385 | 0.7273 | 0.7385 | 0.8594 |
No log | 6.7647 | 460 | 0.7467 | 0.7190 | 0.7467 | 0.8641 |
No log | 6.7941 | 462 | 0.7052 | 0.7320 | 0.7052 | 0.8398 |
No log | 6.8235 | 464 | 0.6519 | 0.7436 | 0.6519 | 0.8074 |
No log | 6.8529 | 466 | 0.6473 | 0.7547 | 0.6473 | 0.8045 |
No log | 6.8824 | 468 | 0.5998 | 0.7730 | 0.5998 | 0.7745 |
No log | 6.9118 | 470 | 0.5652 | 0.8 | 0.5652 | 0.7518 |
No log | 6.9412 | 472 | 0.4801 | 0.8193 | 0.4801 | 0.6929 |
No log | 6.9706 | 474 | 0.4435 | 0.8519 | 0.4435 | 0.6660 |
No log | 7.0 | 476 | 0.4343 | 0.8434 | 0.4343 | 0.6590 |
No log | 7.0294 | 478 | 0.5023 | 0.8177 | 0.5023 | 0.7087 |
No log | 7.0588 | 480 | 0.6469 | 0.8 | 0.6469 | 0.8043 |
No log | 7.0882 | 482 | 0.6603 | 0.7528 | 0.6603 | 0.8126 |
No log | 7.1176 | 484 | 0.5575 | 0.8364 | 0.5575 | 0.7467 |
No log | 7.1471 | 486 | 0.5195 | 0.8344 | 0.5195 | 0.7207 |
No log | 7.1765 | 488 | 0.5460 | 0.8344 | 0.5460 | 0.7389 |
No log | 7.2059 | 490 | 0.5852 | 0.8272 | 0.5852 | 0.7650 |
No log | 7.2353 | 492 | 0.6445 | 0.7665 | 0.6445 | 0.8028 |
No log | 7.2647 | 494 | 0.6599 | 0.7647 | 0.6599 | 0.8124 |
No log | 7.2941 | 496 | 0.6938 | 0.7683 | 0.6938 | 0.8329 |
No log | 7.3235 | 498 | 0.7081 | 0.7389 | 0.7081 | 0.8415 |
0.3819 | 7.3529 | 500 | 0.6216 | 0.7733 | 0.6216 | 0.7884 |
0.3819 | 7.3824 | 502 | 0.6040 | 0.75 | 0.6040 | 0.7772 |
0.3819 | 7.4118 | 504 | 0.5856 | 0.7671 | 0.5856 | 0.7652 |
0.3819 | 7.4412 | 506 | 0.5855 | 0.7671 | 0.5855 | 0.7652 |
0.3819 | 7.4706 | 508 | 0.6596 | 0.7578 | 0.6596 | 0.8121 |
0.3819 | 7.5 | 510 | 0.8098 | 0.7117 | 0.8098 | 0.8999 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/ArabicNewSplits7_OSS_usingWellWrittenEssays_FineTuningAraBERT_run2_AugV5_k9_task1_organization
Base model
aubmindlab/bert-base-arabertv02