ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run3_AugV5_k1_task1_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4547
  • Qwk: 0.4603
  • Mse: 1.4547
  • Rmse: 1.2061

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.5 2 6.8174 0.0242 6.8174 2.6110
No log 1.0 4 4.5971 0.0690 4.5971 2.1441
No log 1.5 6 3.3125 0.0238 3.3125 1.8200
No log 2.0 8 2.5306 0.0556 2.5306 1.5908
No log 2.5 10 1.8020 0.1869 1.8020 1.3424
No log 3.0 12 1.6368 0.1887 1.6368 1.2794
No log 3.5 14 1.6175 0.1509 1.6175 1.2718
No log 4.0 16 1.6731 0.1524 1.6731 1.2935
No log 4.5 18 1.6103 0.0971 1.6103 1.2690
No log 5.0 20 1.5276 0.0784 1.5276 1.2360
No log 5.5 22 1.5572 0.2182 1.5572 1.2479
No log 6.0 24 1.5751 0.2182 1.5751 1.2550
No log 6.5 26 1.4601 0.2037 1.4601 1.2084
No log 7.0 28 1.7074 0.2075 1.7074 1.3067
No log 7.5 30 2.2306 0.0185 2.2306 1.4935
No log 8.0 32 2.0906 0.0893 2.0906 1.4459
No log 8.5 34 1.9482 0.1207 1.9482 1.3958
No log 9.0 36 1.5947 0.4320 1.5947 1.2628
No log 9.5 38 1.4011 0.3540 1.4011 1.1837
No log 10.0 40 1.3890 0.1869 1.3890 1.1785
No log 10.5 42 1.4435 0.2342 1.4435 1.2014
No log 11.0 44 1.4752 0.2182 1.4752 1.2146
No log 11.5 46 1.4280 0.2342 1.4280 1.1950
No log 12.0 48 1.4148 0.1852 1.4148 1.1895
No log 12.5 50 1.3517 0.2182 1.3517 1.1626
No log 13.0 52 1.2570 0.3898 1.2570 1.1211
No log 13.5 54 1.2267 0.4833 1.2267 1.1076
No log 14.0 56 1.2831 0.4793 1.2831 1.1328
No log 14.5 58 1.5241 0.3680 1.5241 1.2346
No log 15.0 60 1.6500 0.3150 1.6500 1.2845
No log 15.5 62 1.5657 0.3150 1.5657 1.2513
No log 16.0 64 1.4352 0.4516 1.4352 1.1980
No log 16.5 66 1.2365 0.496 1.2365 1.1120
No log 17.0 68 1.2732 0.496 1.2732 1.1284
No log 17.5 70 1.4399 0.368 1.4398 1.1999
No log 18.0 72 1.6003 0.3256 1.6003 1.2650
No log 18.5 74 1.6527 0.3125 1.6527 1.2856
No log 19.0 76 1.5812 0.3492 1.5812 1.2575
No log 19.5 78 1.4702 0.3248 1.4702 1.2125
No log 20.0 80 1.4503 0.3130 1.4503 1.2043
No log 20.5 82 1.4726 0.3559 1.4726 1.2135
No log 21.0 84 1.4834 0.3226 1.4834 1.2179
No log 21.5 86 1.4375 0.4098 1.4375 1.1989
No log 22.0 88 1.4755 0.3906 1.4755 1.2147
No log 22.5 90 1.6002 0.3636 1.6002 1.2650
No log 23.0 92 1.6562 0.3206 1.6562 1.2869
No log 23.5 94 1.6020 0.3910 1.6020 1.2657
No log 24.0 96 1.3729 0.5079 1.3729 1.1717
No log 24.5 98 1.3132 0.3077 1.3132 1.1459
No log 25.0 100 1.3877 0.2523 1.3877 1.1780
No log 25.5 102 1.3783 0.3276 1.3783 1.1740
No log 26.0 104 1.4817 0.4286 1.4817 1.2173
No log 26.5 106 1.5767 0.4 1.5767 1.2557
No log 27.0 108 1.5827 0.3937 1.5827 1.2580
No log 27.5 110 1.5431 0.4 1.5431 1.2422
No log 28.0 112 1.4801 0.3361 1.4801 1.2166
No log 28.5 114 1.4381 0.3967 1.4381 1.1992
No log 29.0 116 1.4902 0.3968 1.4902 1.2207
No log 29.5 118 1.4988 0.4375 1.4988 1.2242
No log 30.0 120 1.4701 0.4444 1.4701 1.2125
No log 30.5 122 1.4123 0.4590 1.4123 1.1884
No log 31.0 124 1.3722 0.4298 1.3722 1.1714
No log 31.5 126 1.3619 0.4426 1.3619 1.1670
No log 32.0 128 1.4264 0.4219 1.4264 1.1943
No log 32.5 130 1.5234 0.3788 1.5234 1.2343
No log 33.0 132 1.6059 0.3538 1.6059 1.2673
No log 33.5 134 1.6217 0.3538 1.6217 1.2735
No log 34.0 136 1.5737 0.3538 1.5737 1.2545
No log 34.5 138 1.4459 0.4127 1.4459 1.2025
No log 35.0 140 1.4009 0.4553 1.4009 1.1836
No log 35.5 142 1.4471 0.4882 1.4471 1.2030
No log 36.0 144 1.4949 0.4688 1.4949 1.2226
No log 36.5 146 1.4823 0.4567 1.4823 1.2175
No log 37.0 148 1.4331 0.3590 1.4331 1.1971
No log 37.5 150 1.4053 0.3419 1.4053 1.1855
No log 38.0 152 1.3974 0.3866 1.3974 1.1821
No log 38.5 154 1.4170 0.4127 1.4170 1.1904
No log 39.0 156 1.4822 0.4615 1.4822 1.2175
No log 39.5 158 1.4988 0.4545 1.4988 1.2243
No log 40.0 160 1.4513 0.4375 1.4513 1.2047
No log 40.5 162 1.3903 0.4839 1.3903 1.1791
No log 41.0 164 1.3735 0.4839 1.3735 1.1720
No log 41.5 166 1.3727 0.4839 1.3727 1.1716
No log 42.0 168 1.3704 0.4839 1.3704 1.1707
No log 42.5 170 1.3491 0.4839 1.3491 1.1615
No log 43.0 172 1.4050 0.4444 1.4050 1.1853
No log 43.5 174 1.5454 0.4091 1.5454 1.2432
No log 44.0 176 1.5794 0.3817 1.5794 1.2567
No log 44.5 178 1.4785 0.4091 1.4785 1.2159
No log 45.0 180 1.3993 0.4715 1.3993 1.1829
No log 45.5 182 1.3803 0.4426 1.3803 1.1749
No log 46.0 184 1.4046 0.4426 1.4046 1.1852
No log 46.5 186 1.4309 0.4 1.4309 1.1962
No log 47.0 188 1.4997 0.4032 1.4997 1.2246
No log 47.5 190 1.5675 0.3438 1.5675 1.2520
No log 48.0 192 1.5970 0.3150 1.5970 1.2637
No log 48.5 194 1.5634 0.3810 1.5634 1.2504
No log 49.0 196 1.5037 0.3667 1.5037 1.2263
No log 49.5 198 1.4891 0.3667 1.4891 1.2203
No log 50.0 200 1.4772 0.3866 1.4772 1.2154
No log 50.5 202 1.5009 0.4228 1.5009 1.2251
No log 51.0 204 1.5472 0.3721 1.5472 1.2439
No log 51.5 206 1.6029 0.4148 1.6029 1.2660
No log 52.0 208 1.5840 0.4148 1.5840 1.2586
No log 52.5 210 1.5173 0.4328 1.5173 1.2318
No log 53.0 212 1.4205 0.3876 1.4205 1.1919
No log 53.5 214 1.3429 0.4590 1.3429 1.1588
No log 54.0 216 1.3475 0.4590 1.3475 1.1608
No log 54.5 218 1.3795 0.4590 1.3795 1.1745
No log 55.0 220 1.4301 0.4032 1.4301 1.1959
No log 55.5 222 1.4914 0.4186 1.4914 1.2212
No log 56.0 224 1.5723 0.3906 1.5723 1.2539
No log 56.5 226 1.5762 0.3721 1.5762 1.2555
No log 57.0 228 1.5203 0.3968 1.5203 1.2330
No log 57.5 230 1.4495 0.3934 1.4495 1.2040
No log 58.0 232 1.3923 0.3932 1.3923 1.1799
No log 58.5 234 1.3799 0.3793 1.3799 1.1747
No log 59.0 236 1.3675 0.3826 1.3675 1.1694
No log 59.5 238 1.3463 0.3898 1.3463 1.1603
No log 60.0 240 1.3480 0.4463 1.3480 1.1610
No log 60.5 242 1.3608 0.4590 1.3608 1.1665
No log 61.0 244 1.3980 0.4715 1.3980 1.1824
No log 61.5 246 1.4286 0.48 1.4286 1.1952
No log 62.0 248 1.4785 0.4462 1.4785 1.2159
No log 62.5 250 1.4790 0.4409 1.4790 1.2161
No log 63.0 252 1.4631 0.4320 1.4631 1.2096
No log 63.5 254 1.4589 0.4194 1.4589 1.2078
No log 64.0 256 1.4686 0.4194 1.4686 1.2119
No log 64.5 258 1.4768 0.4194 1.4768 1.2152
No log 65.0 260 1.4956 0.4194 1.4956 1.2229
No log 65.5 262 1.5177 0.4094 1.5177 1.2319
No log 66.0 264 1.5310 0.4219 1.5310 1.2373
No log 66.5 266 1.5037 0.4094 1.5037 1.2263
No log 67.0 268 1.4574 0.4516 1.4574 1.2072
No log 67.5 270 1.4588 0.4480 1.4588 1.2078
No log 68.0 272 1.4803 0.4375 1.4803 1.2167
No log 68.5 274 1.4779 0.4496 1.4779 1.2157
No log 69.0 276 1.4844 0.4462 1.4844 1.2184
No log 69.5 278 1.4991 0.4462 1.4991 1.2244
No log 70.0 280 1.4804 0.4462 1.4804 1.2167
No log 70.5 282 1.4350 0.4496 1.4350 1.1979
No log 71.0 284 1.3830 0.4677 1.3830 1.1760
No log 71.5 286 1.3728 0.4426 1.3728 1.1717
No log 72.0 288 1.3836 0.4426 1.3836 1.1763
No log 72.5 290 1.4088 0.4426 1.4088 1.1869
No log 73.0 292 1.4470 0.4426 1.4470 1.2029
No log 73.5 294 1.4852 0.4677 1.4852 1.2187
No log 74.0 296 1.5282 0.4320 1.5282 1.2362
No log 74.5 298 1.5413 0.4219 1.5413 1.2415
No log 75.0 300 1.5246 0.4409 1.5246 1.2347
No log 75.5 302 1.4936 0.4320 1.4936 1.2221
No log 76.0 304 1.4530 0.4603 1.4530 1.2054
No log 76.5 306 1.4093 0.4320 1.4093 1.1872
No log 77.0 308 1.3907 0.4320 1.3907 1.1793
No log 77.5 310 1.3857 0.4603 1.3857 1.1771
No log 78.0 312 1.3902 0.4603 1.3902 1.1790
No log 78.5 314 1.3885 0.4603 1.3885 1.1784
No log 79.0 316 1.3968 0.4688 1.3968 1.1819
No log 79.5 318 1.4038 0.4688 1.4038 1.1848
No log 80.0 320 1.4156 0.4688 1.4156 1.1898
No log 80.5 322 1.4060 0.4567 1.4060 1.1857
No log 81.0 324 1.3842 0.48 1.3842 1.1765
No log 81.5 326 1.3799 0.4839 1.3799 1.1747
No log 82.0 328 1.3903 0.48 1.3903 1.1791
No log 82.5 330 1.4154 0.4603 1.4154 1.1897
No log 83.0 332 1.4312 0.4567 1.4312 1.1963
No log 83.5 334 1.4416 0.4567 1.4416 1.2007
No log 84.0 336 1.4455 0.4567 1.4455 1.2023
No log 84.5 338 1.4421 0.4688 1.4421 1.2009
No log 85.0 340 1.4505 0.4651 1.4505 1.2044
No log 85.5 342 1.4627 0.4651 1.4627 1.2094
No log 86.0 344 1.4754 0.4462 1.4754 1.2147
No log 86.5 346 1.4917 0.4462 1.4917 1.2213
No log 87.0 348 1.4917 0.4275 1.4917 1.2213
No log 87.5 350 1.4746 0.4462 1.4746 1.2143
No log 88.0 352 1.4485 0.4651 1.4485 1.2035
No log 88.5 354 1.4358 0.4688 1.4358 1.1982
No log 89.0 356 1.4290 0.4567 1.4290 1.1954
No log 89.5 358 1.4322 0.4567 1.4322 1.1968
No log 90.0 360 1.4391 0.4688 1.4391 1.1996
No log 90.5 362 1.4484 0.4651 1.4484 1.2035
No log 91.0 364 1.4620 0.4462 1.4620 1.2092
No log 91.5 366 1.4820 0.4275 1.4820 1.2174
No log 92.0 368 1.4905 0.4275 1.4905 1.2209
No log 92.5 370 1.4914 0.4275 1.4914 1.2212
No log 93.0 372 1.4822 0.4275 1.4822 1.2175
No log 93.5 374 1.4725 0.4651 1.4725 1.2135
No log 94.0 376 1.4624 0.4651 1.4624 1.2093
No log 94.5 378 1.4572 0.4651 1.4572 1.2071
No log 95.0 380 1.4529 0.4567 1.4529 1.2054
No log 95.5 382 1.4540 0.4603 1.4540 1.2058
No log 96.0 384 1.4534 0.4603 1.4534 1.2056
No log 96.5 386 1.4533 0.4603 1.4533 1.2055
No log 97.0 388 1.4524 0.4603 1.4524 1.2051
No log 97.5 390 1.4516 0.4603 1.4516 1.2048
No log 98.0 392 1.4517 0.4603 1.4517 1.2049
No log 98.5 394 1.4530 0.4603 1.4530 1.2054
No log 99.0 396 1.4546 0.4603 1.4546 1.2061
No log 99.5 398 1.4546 0.4603 1.4546 1.2061
No log 100.0 400 1.4547 0.4603 1.4547 1.2061

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
182
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for MayBashendy/ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run3_AugV5_k1_task1_organization

Finetuned
(4222)
this model