MayBashendy commited on
Commit
26639e3
·
verified ·
1 Parent(s): 589c7b6

Training in progress, step 500

Browse files
Files changed (4) hide show
  1. README.md +314 -0
  2. config.json +32 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ base_model: aubmindlab/bert-base-arabertv02
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run2_AugV5_k20_task1_organization
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # ArabicNewSplits7_usingALLEssays_FineTuningAraBERT_run2_AugV5_k20_task1_organization
15
+
16
+ This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 0.7045
19
+ - Qwk: 0.7310
20
+ - Mse: 0.7045
21
+ - Rmse: 0.8393
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 8
42
+ - eval_batch_size: 8
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 100
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
51
+ |:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|
52
+ | No log | 0.0204 | 2 | 6.7174 | 0.0308 | 6.7174 | 2.5918 |
53
+ | No log | 0.0408 | 4 | 4.4563 | 0.0794 | 4.4563 | 2.1110 |
54
+ | No log | 0.0612 | 6 | 3.1875 | 0.0117 | 3.1875 | 1.7854 |
55
+ | No log | 0.0816 | 8 | 3.0216 | 0.0633 | 3.0216 | 1.7383 |
56
+ | No log | 0.1020 | 10 | 2.4230 | 0.0580 | 2.4230 | 1.5566 |
57
+ | No log | 0.1224 | 12 | 1.9490 | 0.1475 | 1.9490 | 1.3961 |
58
+ | No log | 0.1429 | 14 | 1.9543 | 0.1587 | 1.9543 | 1.3980 |
59
+ | No log | 0.1633 | 16 | 2.8647 | 0.1667 | 2.8647 | 1.6925 |
60
+ | No log | 0.1837 | 18 | 3.8796 | 0.1256 | 3.8796 | 1.9697 |
61
+ | No log | 0.2041 | 20 | 3.0360 | 0.1856 | 3.0360 | 1.7424 |
62
+ | No log | 0.2245 | 22 | 2.0022 | 0.3221 | 2.0022 | 1.4150 |
63
+ | No log | 0.2449 | 24 | 1.6594 | 0.375 | 1.6594 | 1.2882 |
64
+ | No log | 0.2653 | 26 | 1.5426 | 0.2479 | 1.5426 | 1.2420 |
65
+ | No log | 0.2857 | 28 | 1.5240 | 0.3710 | 1.5240 | 1.2345 |
66
+ | No log | 0.3061 | 30 | 2.0838 | 0.2993 | 2.0838 | 1.4435 |
67
+ | No log | 0.3265 | 32 | 2.8095 | 0.1413 | 2.8095 | 1.6761 |
68
+ | No log | 0.3469 | 34 | 2.5137 | 0.1871 | 2.5137 | 1.5855 |
69
+ | No log | 0.3673 | 36 | 1.8895 | 0.3129 | 1.8895 | 1.3746 |
70
+ | No log | 0.3878 | 38 | 1.7105 | 0.4638 | 1.7105 | 1.3078 |
71
+ | No log | 0.4082 | 40 | 1.6476 | 0.4380 | 1.6476 | 1.2836 |
72
+ | No log | 0.4286 | 42 | 1.4365 | 0.4733 | 1.4365 | 1.1986 |
73
+ | No log | 0.4490 | 44 | 1.4292 | 0.5098 | 1.4292 | 1.1955 |
74
+ | No log | 0.4694 | 46 | 1.8792 | 0.4624 | 1.8792 | 1.3708 |
75
+ | No log | 0.4898 | 48 | 1.8712 | 0.4550 | 1.8712 | 1.3679 |
76
+ | No log | 0.5102 | 50 | 1.3708 | 0.5780 | 1.3708 | 1.1708 |
77
+ | No log | 0.5306 | 52 | 1.0268 | 0.6174 | 1.0268 | 1.0133 |
78
+ | No log | 0.5510 | 54 | 1.1125 | 0.5263 | 1.1125 | 1.0548 |
79
+ | No log | 0.5714 | 56 | 0.9934 | 0.6370 | 0.9934 | 0.9967 |
80
+ | No log | 0.5918 | 58 | 0.9380 | 0.6338 | 0.9380 | 0.9685 |
81
+ | No log | 0.6122 | 60 | 0.8752 | 0.7092 | 0.8752 | 0.9355 |
82
+ | No log | 0.6327 | 62 | 0.8302 | 0.7465 | 0.8302 | 0.9111 |
83
+ | No log | 0.6531 | 64 | 0.9213 | 0.6892 | 0.9213 | 0.9599 |
84
+ | No log | 0.6735 | 66 | 1.3147 | 0.5103 | 1.3147 | 1.1466 |
85
+ | No log | 0.6939 | 68 | 1.4557 | 0.5098 | 1.4557 | 1.2065 |
86
+ | No log | 0.7143 | 70 | 1.2505 | 0.5616 | 1.2505 | 1.1183 |
87
+ | No log | 0.7347 | 72 | 0.8835 | 0.6974 | 0.8835 | 0.9400 |
88
+ | No log | 0.7551 | 74 | 0.7495 | 0.7632 | 0.7495 | 0.8658 |
89
+ | No log | 0.7755 | 76 | 0.7998 | 0.7237 | 0.7998 | 0.8943 |
90
+ | No log | 0.7959 | 78 | 0.9707 | 0.6579 | 0.9707 | 0.9852 |
91
+ | No log | 0.8163 | 80 | 0.9533 | 0.6667 | 0.9533 | 0.9764 |
92
+ | No log | 0.8367 | 82 | 0.8098 | 0.7285 | 0.8098 | 0.8999 |
93
+ | No log | 0.8571 | 84 | 0.9306 | 0.6667 | 0.9306 | 0.9647 |
94
+ | No log | 0.8776 | 86 | 0.8557 | 0.7211 | 0.8557 | 0.9250 |
95
+ | No log | 0.8980 | 88 | 0.7361 | 0.7613 | 0.7361 | 0.8580 |
96
+ | No log | 0.9184 | 90 | 0.7205 | 0.7950 | 0.7205 | 0.8488 |
97
+ | No log | 0.9388 | 92 | 0.7058 | 0.7799 | 0.7058 | 0.8401 |
98
+ | No log | 0.9592 | 94 | 0.6988 | 0.7799 | 0.6988 | 0.8359 |
99
+ | No log | 0.9796 | 96 | 0.7021 | 0.8 | 0.7021 | 0.8379 |
100
+ | No log | 1.0 | 98 | 0.8463 | 0.7162 | 0.8463 | 0.9200 |
101
+ | No log | 1.0204 | 100 | 1.1284 | 0.5694 | 1.1284 | 1.0623 |
102
+ | No log | 1.0408 | 102 | 1.1276 | 0.5874 | 1.1276 | 1.0619 |
103
+ | No log | 1.0612 | 104 | 0.9246 | 0.6479 | 0.9246 | 0.9616 |
104
+ | No log | 1.0816 | 106 | 0.8874 | 0.6980 | 0.8874 | 0.9420 |
105
+ | No log | 1.1020 | 108 | 1.0326 | 0.6383 | 1.0326 | 1.0161 |
106
+ | No log | 1.1224 | 110 | 1.2588 | 0.5175 | 1.2588 | 1.1220 |
107
+ | No log | 1.1429 | 112 | 1.0863 | 0.6027 | 1.0863 | 1.0423 |
108
+ | No log | 1.1633 | 114 | 0.8779 | 0.6939 | 0.8779 | 0.9370 |
109
+ | No log | 1.1837 | 116 | 0.6969 | 0.7871 | 0.6969 | 0.8348 |
110
+ | No log | 1.2041 | 118 | 0.6677 | 0.7792 | 0.6677 | 0.8171 |
111
+ | No log | 1.2245 | 120 | 0.6652 | 0.7792 | 0.6652 | 0.8156 |
112
+ | No log | 1.2449 | 122 | 0.6743 | 0.8 | 0.6743 | 0.8212 |
113
+ | No log | 1.2653 | 124 | 0.8676 | 0.6712 | 0.8676 | 0.9315 |
114
+ | No log | 1.2857 | 126 | 1.0875 | 0.5890 | 1.0875 | 1.0428 |
115
+ | No log | 1.3061 | 128 | 1.0079 | 0.6207 | 1.0079 | 1.0039 |
116
+ | No log | 1.3265 | 130 | 0.7587 | 0.7792 | 0.7587 | 0.8710 |
117
+ | No log | 1.3469 | 132 | 0.6503 | 0.8 | 0.6503 | 0.8064 |
118
+ | No log | 1.3673 | 134 | 0.6500 | 0.7792 | 0.6500 | 0.8062 |
119
+ | No log | 1.3878 | 136 | 0.6709 | 0.7895 | 0.6709 | 0.8191 |
120
+ | No log | 1.4082 | 138 | 0.7357 | 0.7586 | 0.7357 | 0.8577 |
121
+ | No log | 1.4286 | 140 | 0.8362 | 0.7324 | 0.8362 | 0.9145 |
122
+ | No log | 1.4490 | 142 | 0.7971 | 0.7222 | 0.7971 | 0.8928 |
123
+ | No log | 1.4694 | 144 | 0.7162 | 0.7808 | 0.7162 | 0.8463 |
124
+ | No log | 1.4898 | 146 | 0.6671 | 0.7919 | 0.6671 | 0.8168 |
125
+ | No log | 1.5102 | 148 | 0.6714 | 0.8 | 0.6714 | 0.8194 |
126
+ | No log | 1.5306 | 150 | 0.8025 | 0.7632 | 0.8025 | 0.8958 |
127
+ | No log | 1.5510 | 152 | 1.1051 | 0.5714 | 1.1051 | 1.0512 |
128
+ | No log | 1.5714 | 154 | 1.1571 | 0.5714 | 1.1571 | 1.0757 |
129
+ | No log | 1.5918 | 156 | 0.8993 | 0.6800 | 0.8993 | 0.9483 |
130
+ | No log | 1.6122 | 158 | 0.7168 | 0.7882 | 0.7168 | 0.8466 |
131
+ | No log | 1.6327 | 160 | 0.7312 | 0.7836 | 0.7312 | 0.8551 |
132
+ | No log | 1.6531 | 162 | 0.7298 | 0.7547 | 0.7298 | 0.8543 |
133
+ | No log | 1.6735 | 164 | 0.7294 | 0.7368 | 0.7294 | 0.8540 |
134
+ | No log | 1.6939 | 166 | 0.8233 | 0.6897 | 0.8233 | 0.9073 |
135
+ | No log | 1.7143 | 168 | 0.8861 | 0.6294 | 0.8861 | 0.9413 |
136
+ | No log | 1.7347 | 170 | 0.8064 | 0.6986 | 0.8064 | 0.8980 |
137
+ | No log | 1.7551 | 172 | 0.7288 | 0.7517 | 0.7288 | 0.8537 |
138
+ | No log | 1.7755 | 174 | 0.7431 | 0.7347 | 0.7431 | 0.8620 |
139
+ | No log | 1.7959 | 176 | 0.7994 | 0.7211 | 0.7994 | 0.8941 |
140
+ | No log | 1.8163 | 178 | 0.7876 | 0.6803 | 0.7876 | 0.8874 |
141
+ | No log | 1.8367 | 180 | 0.7442 | 0.7607 | 0.7442 | 0.8627 |
142
+ | No log | 1.8571 | 182 | 0.7432 | 0.7471 | 0.7432 | 0.8621 |
143
+ | No log | 1.8776 | 184 | 0.7510 | 0.7205 | 0.7510 | 0.8666 |
144
+ | No log | 1.8980 | 186 | 0.7706 | 0.7226 | 0.7706 | 0.8778 |
145
+ | No log | 1.9184 | 188 | 0.8096 | 0.7105 | 0.8096 | 0.8998 |
146
+ | No log | 1.9388 | 190 | 0.9114 | 0.7020 | 0.9114 | 0.9547 |
147
+ | No log | 1.9592 | 192 | 0.8274 | 0.7105 | 0.8274 | 0.9096 |
148
+ | No log | 1.9796 | 194 | 0.7447 | 0.7662 | 0.7447 | 0.8630 |
149
+ | No log | 2.0 | 196 | 0.7729 | 0.7285 | 0.7729 | 0.8792 |
150
+ | No log | 2.0204 | 198 | 0.7831 | 0.7285 | 0.7831 | 0.8849 |
151
+ | No log | 2.0408 | 200 | 0.8292 | 0.7114 | 0.8292 | 0.9106 |
152
+ | No log | 2.0612 | 202 | 0.8168 | 0.6993 | 0.8168 | 0.9038 |
153
+ | No log | 2.0816 | 204 | 0.7753 | 0.7619 | 0.7753 | 0.8805 |
154
+ | No log | 2.1020 | 206 | 0.7439 | 0.7703 | 0.7439 | 0.8625 |
155
+ | No log | 2.1224 | 208 | 0.7388 | 0.7682 | 0.7388 | 0.8596 |
156
+ | No log | 2.1429 | 210 | 0.7886 | 0.7123 | 0.7886 | 0.8880 |
157
+ | No log | 2.1633 | 212 | 0.7780 | 0.7123 | 0.7780 | 0.8821 |
158
+ | No log | 2.1837 | 214 | 0.7476 | 0.7632 | 0.7476 | 0.8646 |
159
+ | No log | 2.2041 | 216 | 0.7308 | 0.7531 | 0.7308 | 0.8549 |
160
+ | No log | 2.2245 | 218 | 0.7159 | 0.7558 | 0.7159 | 0.8461 |
161
+ | No log | 2.2449 | 220 | 0.7318 | 0.7595 | 0.7318 | 0.8555 |
162
+ | No log | 2.2653 | 222 | 0.7949 | 0.7123 | 0.7949 | 0.8916 |
163
+ | No log | 2.2857 | 224 | 0.7909 | 0.7310 | 0.7909 | 0.8893 |
164
+ | No log | 2.3061 | 226 | 0.7920 | 0.7190 | 0.7920 | 0.8900 |
165
+ | No log | 2.3265 | 228 | 0.8823 | 0.6829 | 0.8823 | 0.9393 |
166
+ | No log | 2.3469 | 230 | 0.9213 | 0.6706 | 0.9213 | 0.9599 |
167
+ | No log | 2.3673 | 232 | 0.7959 | 0.7543 | 0.7959 | 0.8921 |
168
+ | No log | 2.3878 | 234 | 0.7874 | 0.7784 | 0.7874 | 0.8873 |
169
+ | No log | 2.4082 | 236 | 0.7992 | 0.7362 | 0.7992 | 0.8940 |
170
+ | No log | 2.4286 | 238 | 0.7783 | 0.7665 | 0.7783 | 0.8822 |
171
+ | No log | 2.4490 | 240 | 0.7737 | 0.7619 | 0.7737 | 0.8796 |
172
+ | No log | 2.4694 | 242 | 0.7734 | 0.7674 | 0.7734 | 0.8794 |
173
+ | No log | 2.4898 | 244 | 0.7594 | 0.7711 | 0.7594 | 0.8714 |
174
+ | No log | 2.5102 | 246 | 0.8463 | 0.7020 | 0.8463 | 0.9199 |
175
+ | No log | 2.5306 | 248 | 0.9216 | 0.6800 | 0.9216 | 0.9600 |
176
+ | No log | 2.5510 | 250 | 0.8400 | 0.7190 | 0.8400 | 0.9165 |
177
+ | No log | 2.5714 | 252 | 0.7497 | 0.75 | 0.7497 | 0.8659 |
178
+ | No log | 2.5918 | 254 | 0.8001 | 0.7407 | 0.8001 | 0.8945 |
179
+ | No log | 2.6122 | 256 | 0.8236 | 0.725 | 0.8236 | 0.9075 |
180
+ | No log | 2.6327 | 258 | 0.7864 | 0.7368 | 0.7864 | 0.8868 |
181
+ | No log | 2.6531 | 260 | 0.7667 | 0.7083 | 0.7667 | 0.8756 |
182
+ | No log | 2.6735 | 262 | 0.9291 | 0.6538 | 0.9291 | 0.9639 |
183
+ | No log | 2.6939 | 264 | 0.9641 | 0.6782 | 0.9641 | 0.9819 |
184
+ | No log | 2.7143 | 266 | 0.8466 | 0.6857 | 0.8466 | 0.9201 |
185
+ | No log | 2.7347 | 268 | 0.6930 | 0.7771 | 0.6930 | 0.8325 |
186
+ | No log | 2.7551 | 270 | 0.6784 | 0.7771 | 0.6784 | 0.8236 |
187
+ | No log | 2.7755 | 272 | 0.7659 | 0.7226 | 0.7659 | 0.8752 |
188
+ | No log | 2.7959 | 274 | 0.9423 | 0.6275 | 0.9423 | 0.9707 |
189
+ | No log | 2.8163 | 276 | 1.0074 | 0.6267 | 1.0074 | 1.0037 |
190
+ | No log | 2.8367 | 278 | 0.8514 | 0.6759 | 0.8514 | 0.9227 |
191
+ | No log | 2.8571 | 280 | 0.7186 | 0.7467 | 0.7186 | 0.8477 |
192
+ | No log | 2.8776 | 282 | 0.6417 | 0.7826 | 0.6417 | 0.8010 |
193
+ | No log | 2.8980 | 284 | 0.6099 | 0.7929 | 0.6099 | 0.7809 |
194
+ | No log | 2.9184 | 286 | 0.5929 | 0.8 | 0.5929 | 0.7700 |
195
+ | No log | 2.9388 | 288 | 0.5938 | 0.8187 | 0.5938 | 0.7706 |
196
+ | No log | 2.9592 | 290 | 0.6380 | 0.8023 | 0.6380 | 0.7988 |
197
+ | No log | 2.9796 | 292 | 0.6395 | 0.8144 | 0.6395 | 0.7997 |
198
+ | No log | 3.0 | 294 | 0.6729 | 0.7848 | 0.6729 | 0.8203 |
199
+ | No log | 3.0204 | 296 | 0.7357 | 0.7532 | 0.7357 | 0.8577 |
200
+ | No log | 3.0408 | 298 | 0.7328 | 0.7692 | 0.7328 | 0.8560 |
201
+ | No log | 3.0612 | 300 | 0.6819 | 0.7891 | 0.6819 | 0.8258 |
202
+ | No log | 3.0816 | 302 | 0.7172 | 0.7310 | 0.7172 | 0.8469 |
203
+ | No log | 3.1020 | 304 | 0.7987 | 0.6667 | 0.7987 | 0.8937 |
204
+ | No log | 3.1224 | 306 | 0.8090 | 0.6800 | 0.8090 | 0.8995 |
205
+ | No log | 3.1429 | 308 | 0.7063 | 0.7436 | 0.7063 | 0.8404 |
206
+ | No log | 3.1633 | 310 | 0.6268 | 0.8148 | 0.6268 | 0.7917 |
207
+ | No log | 3.1837 | 312 | 0.6419 | 0.8 | 0.6419 | 0.8012 |
208
+ | No log | 3.2041 | 314 | 0.6442 | 0.7848 | 0.6442 | 0.8027 |
209
+ | No log | 3.2245 | 316 | 0.6616 | 0.7771 | 0.6616 | 0.8134 |
210
+ | No log | 3.2449 | 318 | 0.7583 | 0.6667 | 0.7583 | 0.8708 |
211
+ | No log | 3.2653 | 320 | 0.8580 | 0.6519 | 0.8580 | 0.9263 |
212
+ | No log | 3.2857 | 322 | 0.8737 | 0.6567 | 0.8737 | 0.9347 |
213
+ | No log | 3.3061 | 324 | 0.8228 | 0.6316 | 0.8228 | 0.9071 |
214
+ | No log | 3.3265 | 326 | 0.7965 | 0.6715 | 0.7965 | 0.8925 |
215
+ | No log | 3.3469 | 328 | 0.7707 | 0.6849 | 0.7707 | 0.8779 |
216
+ | No log | 3.3673 | 330 | 0.7369 | 0.7237 | 0.7369 | 0.8585 |
217
+ | No log | 3.3878 | 332 | 0.7482 | 0.7550 | 0.7482 | 0.8650 |
218
+ | No log | 3.4082 | 334 | 0.7594 | 0.775 | 0.7594 | 0.8715 |
219
+ | No log | 3.4286 | 336 | 0.7107 | 0.775 | 0.7107 | 0.8430 |
220
+ | No log | 3.4490 | 338 | 0.6900 | 0.7826 | 0.6900 | 0.8306 |
221
+ | No log | 3.4694 | 340 | 0.6895 | 0.7848 | 0.6895 | 0.8304 |
222
+ | No log | 3.4898 | 342 | 0.7396 | 0.7564 | 0.7396 | 0.8600 |
223
+ | No log | 3.5102 | 344 | 0.7459 | 0.6667 | 0.7459 | 0.8637 |
224
+ | No log | 3.5306 | 346 | 0.7322 | 0.6567 | 0.7322 | 0.8557 |
225
+ | No log | 3.5510 | 348 | 0.7114 | 0.7848 | 0.7114 | 0.8434 |
226
+ | No log | 3.5714 | 350 | 0.7204 | 0.7742 | 0.7204 | 0.8488 |
227
+ | No log | 3.5918 | 352 | 0.7095 | 0.7432 | 0.7095 | 0.8423 |
228
+ | No log | 3.6122 | 354 | 0.7185 | 0.6857 | 0.7185 | 0.8477 |
229
+ | No log | 3.6327 | 356 | 0.7125 | 0.7092 | 0.7125 | 0.8441 |
230
+ | No log | 3.6531 | 358 | 0.6589 | 0.7632 | 0.6589 | 0.8117 |
231
+ | No log | 3.6735 | 360 | 0.5919 | 0.8098 | 0.5919 | 0.7693 |
232
+ | No log | 3.6939 | 362 | 0.5758 | 0.8148 | 0.5758 | 0.7588 |
233
+ | No log | 3.7143 | 364 | 0.5992 | 0.7831 | 0.5992 | 0.7741 |
234
+ | No log | 3.7347 | 366 | 0.6047 | 0.7925 | 0.6047 | 0.7776 |
235
+ | No log | 3.7551 | 368 | 0.6240 | 0.7712 | 0.6240 | 0.7899 |
236
+ | No log | 3.7755 | 370 | 0.6341 | 0.7947 | 0.6341 | 0.7963 |
237
+ | No log | 3.7959 | 372 | 0.6674 | 0.7397 | 0.6674 | 0.8169 |
238
+ | No log | 3.8163 | 374 | 0.7039 | 0.7333 | 0.7039 | 0.8390 |
239
+ | No log | 3.8367 | 376 | 0.7107 | 0.7383 | 0.7107 | 0.8430 |
240
+ | No log | 3.8571 | 378 | 0.7722 | 0.7075 | 0.7722 | 0.8787 |
241
+ | No log | 3.8776 | 380 | 0.9585 | 0.6345 | 0.9585 | 0.9790 |
242
+ | No log | 3.8980 | 382 | 1.1258 | 0.5972 | 1.1258 | 1.0611 |
243
+ | No log | 3.9184 | 384 | 1.1430 | 0.5714 | 1.1430 | 1.0691 |
244
+ | No log | 3.9388 | 386 | 1.0106 | 0.5942 | 1.0106 | 1.0053 |
245
+ | No log | 3.9592 | 388 | 0.8096 | 0.6761 | 0.8096 | 0.8998 |
246
+ | No log | 3.9796 | 390 | 0.6833 | 0.7226 | 0.6833 | 0.8266 |
247
+ | No log | 4.0 | 392 | 0.6381 | 0.7826 | 0.6381 | 0.7988 |
248
+ | No log | 4.0204 | 394 | 0.6394 | 0.7564 | 0.6394 | 0.7996 |
249
+ | No log | 4.0408 | 396 | 0.6674 | 0.7172 | 0.6674 | 0.8169 |
250
+ | No log | 4.0612 | 398 | 0.6859 | 0.7310 | 0.6859 | 0.8282 |
251
+ | No log | 4.0816 | 400 | 0.7193 | 0.7310 | 0.7193 | 0.8481 |
252
+ | No log | 4.1020 | 402 | 0.7566 | 0.6853 | 0.7566 | 0.8698 |
253
+ | No log | 4.1224 | 404 | 0.7501 | 0.6853 | 0.7501 | 0.8661 |
254
+ | No log | 4.1429 | 406 | 0.7524 | 0.6853 | 0.7524 | 0.8674 |
255
+ | No log | 4.1633 | 408 | 0.7406 | 0.6853 | 0.7406 | 0.8606 |
256
+ | No log | 4.1837 | 410 | 0.7903 | 0.6713 | 0.7903 | 0.8890 |
257
+ | No log | 4.2041 | 412 | 0.8221 | 0.6471 | 0.8221 | 0.9067 |
258
+ | No log | 4.2245 | 414 | 0.9096 | 0.6471 | 0.9096 | 0.9537 |
259
+ | No log | 4.2449 | 416 | 0.9758 | 0.6522 | 0.9758 | 0.9878 |
260
+ | No log | 4.2653 | 418 | 0.9360 | 0.6331 | 0.9360 | 0.9675 |
261
+ | No log | 4.2857 | 420 | 0.7852 | 0.7083 | 0.7852 | 0.8861 |
262
+ | No log | 4.3061 | 422 | 0.6157 | 0.7975 | 0.6157 | 0.7846 |
263
+ | No log | 4.3265 | 424 | 0.5897 | 0.8024 | 0.5897 | 0.7679 |
264
+ | No log | 4.3469 | 426 | 0.5938 | 0.8024 | 0.5938 | 0.7706 |
265
+ | No log | 4.3673 | 428 | 0.6648 | 0.7799 | 0.6648 | 0.8153 |
266
+ | No log | 4.3878 | 430 | 0.6857 | 0.7821 | 0.6857 | 0.8280 |
267
+ | No log | 4.4082 | 432 | 0.6399 | 0.7898 | 0.6399 | 0.7999 |
268
+ | No log | 4.4286 | 434 | 0.6043 | 0.7831 | 0.6043 | 0.7774 |
269
+ | No log | 4.4490 | 436 | 0.6115 | 0.7711 | 0.6115 | 0.7820 |
270
+ | No log | 4.4694 | 438 | 0.5949 | 0.7831 | 0.5949 | 0.7713 |
271
+ | No log | 4.4898 | 440 | 0.5848 | 0.7879 | 0.5848 | 0.7647 |
272
+ | No log | 4.5102 | 442 | 0.6122 | 0.7927 | 0.6122 | 0.7825 |
273
+ | No log | 4.5306 | 444 | 0.6888 | 0.7516 | 0.6888 | 0.8299 |
274
+ | No log | 4.5510 | 446 | 0.8027 | 0.6933 | 0.8027 | 0.8959 |
275
+ | No log | 4.5714 | 448 | 0.8528 | 0.6622 | 0.8528 | 0.9235 |
276
+ | No log | 4.5918 | 450 | 0.8190 | 0.6849 | 0.8190 | 0.9050 |
277
+ | No log | 4.6122 | 452 | 0.7102 | 0.7333 | 0.7102 | 0.8427 |
278
+ | No log | 4.6327 | 454 | 0.6681 | 0.7792 | 0.6681 | 0.8174 |
279
+ | No log | 4.6531 | 456 | 0.6857 | 0.7632 | 0.6857 | 0.8281 |
280
+ | No log | 4.6735 | 458 | 0.6695 | 0.7417 | 0.6695 | 0.8182 |
281
+ | No log | 4.6939 | 460 | 0.7207 | 0.6906 | 0.7207 | 0.8490 |
282
+ | No log | 4.7143 | 462 | 0.8037 | 0.6618 | 0.8037 | 0.8965 |
283
+ | No log | 4.7347 | 464 | 0.7987 | 0.6667 | 0.7987 | 0.8937 |
284
+ | No log | 4.7551 | 466 | 0.6984 | 0.7183 | 0.6984 | 0.8357 |
285
+ | No log | 4.7755 | 468 | 0.6629 | 0.7310 | 0.6629 | 0.8142 |
286
+ | No log | 4.7959 | 470 | 0.6683 | 0.7092 | 0.6683 | 0.8175 |
287
+ | No log | 4.8163 | 472 | 0.6615 | 0.7310 | 0.6615 | 0.8134 |
288
+ | No log | 4.8367 | 474 | 0.6543 | 0.7361 | 0.6543 | 0.8089 |
289
+ | No log | 4.8571 | 476 | 0.6977 | 0.7133 | 0.6977 | 0.8353 |
290
+ | No log | 4.8776 | 478 | 0.7012 | 0.7133 | 0.7012 | 0.8373 |
291
+ | No log | 4.8980 | 480 | 0.6705 | 0.7682 | 0.6705 | 0.8188 |
292
+ | No log | 4.9184 | 482 | 0.6807 | 0.7682 | 0.6807 | 0.8250 |
293
+ | No log | 4.9388 | 484 | 0.6954 | 0.7682 | 0.6954 | 0.8339 |
294
+ | No log | 4.9592 | 486 | 0.7463 | 0.7383 | 0.7463 | 0.8639 |
295
+ | No log | 4.9796 | 488 | 0.7634 | 0.7297 | 0.7634 | 0.8737 |
296
+ | No log | 5.0 | 490 | 0.7762 | 0.7297 | 0.7762 | 0.8810 |
297
+ | No log | 5.0204 | 492 | 0.8128 | 0.6887 | 0.8128 | 0.9016 |
298
+ | No log | 5.0408 | 494 | 0.8057 | 0.7134 | 0.8057 | 0.8976 |
299
+ | No log | 5.0612 | 496 | 0.7274 | 0.7550 | 0.7274 | 0.8529 |
300
+ | No log | 5.0816 | 498 | 0.6994 | 0.7516 | 0.6994 | 0.8363 |
301
+ | 0.4463 | 5.1020 | 500 | 0.7055 | 0.7673 | 0.7055 | 0.8399 |
302
+ | 0.4463 | 5.1224 | 502 | 0.7197 | 0.7453 | 0.7197 | 0.8484 |
303
+ | 0.4463 | 5.1429 | 504 | 0.7239 | 0.7453 | 0.7239 | 0.8508 |
304
+ | 0.4463 | 5.1633 | 506 | 0.7008 | 0.7389 | 0.7008 | 0.8372 |
305
+ | 0.4463 | 5.1837 | 508 | 0.7031 | 0.7297 | 0.7031 | 0.8385 |
306
+ | 0.4463 | 5.2041 | 510 | 0.7045 | 0.7310 | 0.7045 | 0.8393 |
307
+
308
+
309
+ ### Framework versions
310
+
311
+ - Transformers 4.44.2
312
+ - Pytorch 2.4.0+cu118
313
+ - Datasets 2.21.0
314
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "aubmindlab/bert-base-arabertv02",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0"
13
+ },
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "label2id": {
17
+ "LABEL_0": 0
18
+ },
19
+ "layer_norm_eps": 1e-12,
20
+ "max_position_embeddings": 512,
21
+ "model_type": "bert",
22
+ "num_attention_heads": 12,
23
+ "num_hidden_layers": 12,
24
+ "pad_token_id": 0,
25
+ "position_embedding_type": "absolute",
26
+ "problem_type": "regression",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.44.2",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 64000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a55320ca728968e254081fff583b1c00f18cb6a9f769905060c94378067f3586
3
+ size 540799996
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e90d4cde5a8d0b3834a14e67c21aa5b3b1406a9b558eecb26f9fdf08dd9a31f
3
+ size 5240