ArabicNewSplits8_FineTuningAraBERT_noAug_task1_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6463
- Qwk: 0.6613
- Mse: 0.6463
- Rmse: 0.8039
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.5 | 2 | 3.3581 | 0.1137 | 3.3581 | 1.8325 |
No log | 1.0 | 4 | 2.0055 | 0.0748 | 2.0055 | 1.4161 |
No log | 1.5 | 6 | 1.3760 | 0.0798 | 1.3760 | 1.1730 |
No log | 2.0 | 8 | 1.1656 | 0.2867 | 1.1656 | 1.0796 |
No log | 2.5 | 10 | 1.1435 | 0.2540 | 1.1435 | 1.0694 |
No log | 3.0 | 12 | 1.0264 | 0.3141 | 1.0264 | 1.0131 |
No log | 3.5 | 14 | 0.9219 | 0.4206 | 0.9219 | 0.9601 |
No log | 4.0 | 16 | 0.8868 | 0.5547 | 0.8868 | 0.9417 |
No log | 4.5 | 18 | 0.7939 | 0.6148 | 0.7939 | 0.8910 |
No log | 5.0 | 20 | 0.8761 | 0.6348 | 0.8761 | 0.9360 |
No log | 5.5 | 22 | 0.7890 | 0.6149 | 0.7890 | 0.8883 |
No log | 6.0 | 24 | 0.7899 | 0.6238 | 0.7899 | 0.8887 |
No log | 6.5 | 26 | 0.6968 | 0.6753 | 0.6968 | 0.8347 |
No log | 7.0 | 28 | 0.7605 | 0.6348 | 0.7605 | 0.8720 |
No log | 7.5 | 30 | 0.7046 | 0.6835 | 0.7046 | 0.8394 |
No log | 8.0 | 32 | 0.6788 | 0.6136 | 0.6788 | 0.8239 |
No log | 8.5 | 34 | 0.6823 | 0.5957 | 0.6823 | 0.8260 |
No log | 9.0 | 36 | 0.7147 | 0.6644 | 0.7147 | 0.8454 |
No log | 9.5 | 38 | 0.6626 | 0.6836 | 0.6626 | 0.8140 |
No log | 10.0 | 40 | 0.6834 | 0.6477 | 0.6834 | 0.8267 |
No log | 10.5 | 42 | 0.6527 | 0.6585 | 0.6527 | 0.8079 |
No log | 11.0 | 44 | 0.8448 | 0.6713 | 0.8448 | 0.9191 |
No log | 11.5 | 46 | 0.9311 | 0.6439 | 0.9311 | 0.9649 |
No log | 12.0 | 48 | 0.6772 | 0.7294 | 0.6772 | 0.8229 |
No log | 12.5 | 50 | 0.7484 | 0.6294 | 0.7484 | 0.8651 |
No log | 13.0 | 52 | 0.7141 | 0.6162 | 0.7141 | 0.8451 |
No log | 13.5 | 54 | 0.6410 | 0.6605 | 0.6410 | 0.8006 |
No log | 14.0 | 56 | 0.6670 | 0.6553 | 0.6670 | 0.8167 |
No log | 14.5 | 58 | 0.6506 | 0.6512 | 0.6506 | 0.8066 |
No log | 15.0 | 60 | 0.7036 | 0.6572 | 0.7036 | 0.8388 |
No log | 15.5 | 62 | 0.6330 | 0.6543 | 0.6330 | 0.7956 |
No log | 16.0 | 64 | 0.7001 | 0.7128 | 0.7001 | 0.8367 |
No log | 16.5 | 66 | 0.6719 | 0.7428 | 0.6719 | 0.8197 |
No log | 17.0 | 68 | 0.5864 | 0.6627 | 0.5864 | 0.7658 |
No log | 17.5 | 70 | 0.5719 | 0.6745 | 0.5719 | 0.7562 |
No log | 18.0 | 72 | 0.6067 | 0.7230 | 0.6067 | 0.7789 |
No log | 18.5 | 74 | 0.6293 | 0.7149 | 0.6293 | 0.7933 |
No log | 19.0 | 76 | 0.5870 | 0.7113 | 0.5870 | 0.7661 |
No log | 19.5 | 78 | 0.6339 | 0.6995 | 0.6339 | 0.7962 |
No log | 20.0 | 80 | 0.6256 | 0.6860 | 0.6256 | 0.7909 |
No log | 20.5 | 82 | 0.6599 | 0.7005 | 0.6599 | 0.8124 |
No log | 21.0 | 84 | 0.7115 | 0.7121 | 0.7115 | 0.8435 |
No log | 21.5 | 86 | 0.6271 | 0.6917 | 0.6271 | 0.7919 |
No log | 22.0 | 88 | 0.5960 | 0.7209 | 0.5960 | 0.7720 |
No log | 22.5 | 90 | 0.5473 | 0.6605 | 0.5473 | 0.7398 |
No log | 23.0 | 92 | 0.6255 | 0.6737 | 0.6255 | 0.7909 |
No log | 23.5 | 94 | 0.9046 | 0.6359 | 0.9046 | 0.9511 |
No log | 24.0 | 96 | 1.0702 | 0.5869 | 1.0702 | 1.0345 |
No log | 24.5 | 98 | 0.8596 | 0.6329 | 0.8596 | 0.9271 |
No log | 25.0 | 100 | 0.6164 | 0.6903 | 0.6164 | 0.7851 |
No log | 25.5 | 102 | 0.5722 | 0.6847 | 0.5722 | 0.7565 |
No log | 26.0 | 104 | 0.5886 | 0.6805 | 0.5886 | 0.7672 |
No log | 26.5 | 106 | 0.5793 | 0.6728 | 0.5793 | 0.7611 |
No log | 27.0 | 108 | 0.5719 | 0.7053 | 0.5719 | 0.7562 |
No log | 27.5 | 110 | 0.5880 | 0.6939 | 0.5880 | 0.7668 |
No log | 28.0 | 112 | 0.6004 | 0.6877 | 0.6004 | 0.7749 |
No log | 28.5 | 114 | 0.5866 | 0.6943 | 0.5866 | 0.7659 |
No log | 29.0 | 116 | 0.6032 | 0.6977 | 0.6032 | 0.7767 |
No log | 29.5 | 118 | 0.6240 | 0.6900 | 0.6240 | 0.7900 |
No log | 30.0 | 120 | 0.6846 | 0.6646 | 0.6846 | 0.8274 |
No log | 30.5 | 122 | 0.7123 | 0.6845 | 0.7123 | 0.8440 |
No log | 31.0 | 124 | 0.6228 | 0.6813 | 0.6228 | 0.7892 |
No log | 31.5 | 126 | 0.6008 | 0.6984 | 0.6008 | 0.7751 |
No log | 32.0 | 128 | 0.6471 | 0.7009 | 0.6471 | 0.8044 |
No log | 32.5 | 130 | 0.6593 | 0.7102 | 0.6593 | 0.8119 |
No log | 33.0 | 132 | 0.5897 | 0.7122 | 0.5897 | 0.7679 |
No log | 33.5 | 134 | 0.5778 | 0.7029 | 0.5778 | 0.7601 |
No log | 34.0 | 136 | 0.5763 | 0.7089 | 0.5763 | 0.7592 |
No log | 34.5 | 138 | 0.5809 | 0.6977 | 0.5809 | 0.7622 |
No log | 35.0 | 140 | 0.5866 | 0.6863 | 0.5866 | 0.7659 |
No log | 35.5 | 142 | 0.5925 | 0.6587 | 0.5925 | 0.7697 |
No log | 36.0 | 144 | 0.5900 | 0.6873 | 0.5900 | 0.7681 |
No log | 36.5 | 146 | 0.6181 | 0.6644 | 0.6181 | 0.7862 |
No log | 37.0 | 148 | 0.6533 | 0.6708 | 0.6533 | 0.8083 |
No log | 37.5 | 150 | 0.6263 | 0.6728 | 0.6263 | 0.7914 |
No log | 38.0 | 152 | 0.5848 | 0.6947 | 0.5848 | 0.7647 |
No log | 38.5 | 154 | 0.5737 | 0.7229 | 0.5737 | 0.7574 |
No log | 39.0 | 156 | 0.5791 | 0.7300 | 0.5791 | 0.7610 |
No log | 39.5 | 158 | 0.6346 | 0.7359 | 0.6346 | 0.7966 |
No log | 40.0 | 160 | 0.6498 | 0.7057 | 0.6498 | 0.8061 |
No log | 40.5 | 162 | 0.6150 | 0.6718 | 0.6150 | 0.7842 |
No log | 41.0 | 164 | 0.5969 | 0.6626 | 0.5969 | 0.7726 |
No log | 41.5 | 166 | 0.6199 | 0.6444 | 0.6199 | 0.7873 |
No log | 42.0 | 168 | 0.6155 | 0.7016 | 0.6155 | 0.7845 |
No log | 42.5 | 170 | 0.6535 | 0.6297 | 0.6535 | 0.8084 |
No log | 43.0 | 172 | 0.8596 | 0.6330 | 0.8596 | 0.9271 |
No log | 43.5 | 174 | 0.9150 | 0.6256 | 0.9150 | 0.9566 |
No log | 44.0 | 176 | 0.8357 | 0.6476 | 0.8357 | 0.9142 |
No log | 44.5 | 178 | 0.6816 | 0.6913 | 0.6816 | 0.8256 |
No log | 45.0 | 180 | 0.5742 | 0.7082 | 0.5742 | 0.7578 |
No log | 45.5 | 182 | 0.5626 | 0.7015 | 0.5626 | 0.7500 |
No log | 46.0 | 184 | 0.5905 | 0.6873 | 0.5905 | 0.7685 |
No log | 46.5 | 186 | 0.6383 | 0.7054 | 0.6383 | 0.7990 |
No log | 47.0 | 188 | 0.6477 | 0.7120 | 0.6477 | 0.8048 |
No log | 47.5 | 190 | 0.6913 | 0.6824 | 0.6913 | 0.8314 |
No log | 48.0 | 192 | 0.6985 | 0.6677 | 0.6985 | 0.8357 |
No log | 48.5 | 194 | 0.6664 | 0.6556 | 0.6664 | 0.8164 |
No log | 49.0 | 196 | 0.6341 | 0.6643 | 0.6341 | 0.7963 |
No log | 49.5 | 198 | 0.6096 | 0.6599 | 0.6096 | 0.7808 |
No log | 50.0 | 200 | 0.5828 | 0.7148 | 0.5828 | 0.7634 |
No log | 50.5 | 202 | 0.5793 | 0.6904 | 0.5793 | 0.7611 |
No log | 51.0 | 204 | 0.5884 | 0.7066 | 0.5884 | 0.7671 |
No log | 51.5 | 206 | 0.5947 | 0.6954 | 0.5947 | 0.7712 |
No log | 52.0 | 208 | 0.5942 | 0.6869 | 0.5942 | 0.7708 |
No log | 52.5 | 210 | 0.5948 | 0.6840 | 0.5948 | 0.7713 |
No log | 53.0 | 212 | 0.6178 | 0.6306 | 0.6178 | 0.7860 |
No log | 53.5 | 214 | 0.6390 | 0.6355 | 0.6390 | 0.7994 |
No log | 54.0 | 216 | 0.6345 | 0.6574 | 0.6345 | 0.7966 |
No log | 54.5 | 218 | 0.6298 | 0.6616 | 0.6298 | 0.7936 |
No log | 55.0 | 220 | 0.6437 | 0.6528 | 0.6437 | 0.8023 |
No log | 55.5 | 222 | 0.6287 | 0.6852 | 0.6287 | 0.7929 |
No log | 56.0 | 224 | 0.6034 | 0.6617 | 0.6034 | 0.7768 |
No log | 56.5 | 226 | 0.5983 | 0.6759 | 0.5983 | 0.7735 |
No log | 57.0 | 228 | 0.6057 | 0.6954 | 0.6057 | 0.7783 |
No log | 57.5 | 230 | 0.6553 | 0.7012 | 0.6553 | 0.8095 |
No log | 58.0 | 232 | 0.7629 | 0.7035 | 0.7629 | 0.8735 |
No log | 58.5 | 234 | 0.8221 | 0.6862 | 0.8221 | 0.9067 |
No log | 59.0 | 236 | 0.7871 | 0.7035 | 0.7871 | 0.8872 |
No log | 59.5 | 238 | 0.6983 | 0.6969 | 0.6983 | 0.8356 |
No log | 60.0 | 240 | 0.6503 | 0.6980 | 0.6503 | 0.8064 |
No log | 60.5 | 242 | 0.6812 | 0.6614 | 0.6812 | 0.8254 |
No log | 61.0 | 244 | 0.7588 | 0.6566 | 0.7588 | 0.8711 |
No log | 61.5 | 246 | 0.7822 | 0.6578 | 0.7822 | 0.8844 |
No log | 62.0 | 248 | 0.6999 | 0.6562 | 0.6999 | 0.8366 |
No log | 62.5 | 250 | 0.6100 | 0.6785 | 0.6100 | 0.7810 |
No log | 63.0 | 252 | 0.5991 | 0.6331 | 0.5991 | 0.7740 |
No log | 63.5 | 254 | 0.6230 | 0.6349 | 0.6230 | 0.7893 |
No log | 64.0 | 256 | 0.6304 | 0.6318 | 0.6304 | 0.7939 |
No log | 64.5 | 258 | 0.6178 | 0.6308 | 0.6178 | 0.7860 |
No log | 65.0 | 260 | 0.6425 | 0.6518 | 0.6425 | 0.8016 |
No log | 65.5 | 262 | 0.7050 | 0.6462 | 0.7050 | 0.8396 |
No log | 66.0 | 264 | 0.7521 | 0.6528 | 0.7521 | 0.8673 |
No log | 66.5 | 266 | 0.7961 | 0.6409 | 0.7961 | 0.8922 |
No log | 67.0 | 268 | 0.7699 | 0.6229 | 0.7699 | 0.8774 |
No log | 67.5 | 270 | 0.7201 | 0.6615 | 0.7201 | 0.8486 |
No log | 68.0 | 272 | 0.6868 | 0.6624 | 0.6868 | 0.8287 |
No log | 68.5 | 274 | 0.6894 | 0.6866 | 0.6894 | 0.8303 |
No log | 69.0 | 276 | 0.6740 | 0.6859 | 0.6740 | 0.8210 |
No log | 69.5 | 278 | 0.6934 | 0.7009 | 0.6934 | 0.8327 |
No log | 70.0 | 280 | 0.7377 | 0.6918 | 0.7377 | 0.8589 |
No log | 70.5 | 282 | 0.8186 | 0.6932 | 0.8186 | 0.9047 |
No log | 71.0 | 284 | 0.8520 | 0.6616 | 0.8520 | 0.9231 |
No log | 71.5 | 286 | 0.8425 | 0.6787 | 0.8425 | 0.9179 |
No log | 72.0 | 288 | 0.8296 | 0.6752 | 0.8296 | 0.9108 |
No log | 72.5 | 290 | 0.8317 | 0.6752 | 0.8317 | 0.9120 |
No log | 73.0 | 292 | 0.7906 | 0.6783 | 0.7906 | 0.8891 |
No log | 73.5 | 294 | 0.7214 | 0.6817 | 0.7214 | 0.8494 |
No log | 74.0 | 296 | 0.6418 | 0.6841 | 0.6418 | 0.8011 |
No log | 74.5 | 298 | 0.5965 | 0.6870 | 0.5965 | 0.7723 |
No log | 75.0 | 300 | 0.5861 | 0.6661 | 0.5861 | 0.7656 |
No log | 75.5 | 302 | 0.5891 | 0.6717 | 0.5891 | 0.7676 |
No log | 76.0 | 304 | 0.5929 | 0.6684 | 0.5929 | 0.7700 |
No log | 76.5 | 306 | 0.6044 | 0.6799 | 0.6044 | 0.7774 |
No log | 77.0 | 308 | 0.6289 | 0.6544 | 0.6289 | 0.7930 |
No log | 77.5 | 310 | 0.6611 | 0.6297 | 0.6611 | 0.8131 |
No log | 78.0 | 312 | 0.6802 | 0.6430 | 0.6802 | 0.8247 |
No log | 78.5 | 314 | 0.6912 | 0.6430 | 0.6912 | 0.8314 |
No log | 79.0 | 316 | 0.6992 | 0.6504 | 0.6992 | 0.8362 |
No log | 79.5 | 318 | 0.6764 | 0.6535 | 0.6764 | 0.8224 |
No log | 80.0 | 320 | 0.6451 | 0.6520 | 0.6451 | 0.8032 |
No log | 80.5 | 322 | 0.6157 | 0.6686 | 0.6157 | 0.7847 |
No log | 81.0 | 324 | 0.5882 | 0.6997 | 0.5882 | 0.7669 |
No log | 81.5 | 326 | 0.5782 | 0.6953 | 0.5782 | 0.7604 |
No log | 82.0 | 328 | 0.5714 | 0.6996 | 0.5714 | 0.7559 |
No log | 82.5 | 330 | 0.5705 | 0.6996 | 0.5705 | 0.7553 |
No log | 83.0 | 332 | 0.5742 | 0.6919 | 0.5742 | 0.7577 |
No log | 83.5 | 334 | 0.5815 | 0.6782 | 0.5815 | 0.7626 |
No log | 84.0 | 336 | 0.5952 | 0.6988 | 0.5952 | 0.7715 |
No log | 84.5 | 338 | 0.6073 | 0.6792 | 0.6073 | 0.7793 |
No log | 85.0 | 340 | 0.6210 | 0.6633 | 0.6210 | 0.7881 |
No log | 85.5 | 342 | 0.6309 | 0.6633 | 0.6309 | 0.7943 |
No log | 86.0 | 344 | 0.6359 | 0.6633 | 0.6359 | 0.7974 |
No log | 86.5 | 346 | 0.6389 | 0.6613 | 0.6389 | 0.7993 |
No log | 87.0 | 348 | 0.6377 | 0.6524 | 0.6377 | 0.7986 |
No log | 87.5 | 350 | 0.6307 | 0.6524 | 0.6307 | 0.7942 |
No log | 88.0 | 352 | 0.6199 | 0.6544 | 0.6199 | 0.7873 |
No log | 88.5 | 354 | 0.6158 | 0.6544 | 0.6158 | 0.7848 |
No log | 89.0 | 356 | 0.6140 | 0.6653 | 0.6140 | 0.7836 |
No log | 89.5 | 358 | 0.6127 | 0.6653 | 0.6127 | 0.7827 |
No log | 90.0 | 360 | 0.6108 | 0.6632 | 0.6108 | 0.7815 |
No log | 90.5 | 362 | 0.6086 | 0.6708 | 0.6086 | 0.7801 |
No log | 91.0 | 364 | 0.6099 | 0.6708 | 0.6099 | 0.7810 |
No log | 91.5 | 366 | 0.6104 | 0.6815 | 0.6104 | 0.7813 |
No log | 92.0 | 368 | 0.6136 | 0.6792 | 0.6136 | 0.7834 |
No log | 92.5 | 370 | 0.6213 | 0.6633 | 0.6213 | 0.7882 |
No log | 93.0 | 372 | 0.6332 | 0.6633 | 0.6332 | 0.7957 |
No log | 93.5 | 374 | 0.6441 | 0.6739 | 0.6441 | 0.8025 |
No log | 94.0 | 376 | 0.6581 | 0.6769 | 0.6581 | 0.8112 |
No log | 94.5 | 378 | 0.6651 | 0.6748 | 0.6651 | 0.8155 |
No log | 95.0 | 380 | 0.6669 | 0.6606 | 0.6669 | 0.8166 |
No log | 95.5 | 382 | 0.6630 | 0.6748 | 0.6630 | 0.8142 |
No log | 96.0 | 384 | 0.6604 | 0.6748 | 0.6604 | 0.8127 |
No log | 96.5 | 386 | 0.6557 | 0.6769 | 0.6557 | 0.8098 |
No log | 97.0 | 388 | 0.6520 | 0.6769 | 0.6520 | 0.8074 |
No log | 97.5 | 390 | 0.6495 | 0.6790 | 0.6495 | 0.8059 |
No log | 98.0 | 392 | 0.6485 | 0.6790 | 0.6485 | 0.8053 |
No log | 98.5 | 394 | 0.6483 | 0.6718 | 0.6483 | 0.8052 |
No log | 99.0 | 396 | 0.6474 | 0.6718 | 0.6474 | 0.8046 |
No log | 99.5 | 398 | 0.6466 | 0.6613 | 0.6466 | 0.8041 |
No log | 100.0 | 400 | 0.6463 | 0.6613 | 0.6463 | 0.8039 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task1_organization
Base model
aubmindlab/bert-base-arabertv02