ArabicNewSplits8_FineTuningAraBERT_noAug_task1_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6463
  • Qwk: 0.6613
  • Mse: 0.6463
  • Rmse: 0.8039

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.5 2 3.3581 0.1137 3.3581 1.8325
No log 1.0 4 2.0055 0.0748 2.0055 1.4161
No log 1.5 6 1.3760 0.0798 1.3760 1.1730
No log 2.0 8 1.1656 0.2867 1.1656 1.0796
No log 2.5 10 1.1435 0.2540 1.1435 1.0694
No log 3.0 12 1.0264 0.3141 1.0264 1.0131
No log 3.5 14 0.9219 0.4206 0.9219 0.9601
No log 4.0 16 0.8868 0.5547 0.8868 0.9417
No log 4.5 18 0.7939 0.6148 0.7939 0.8910
No log 5.0 20 0.8761 0.6348 0.8761 0.9360
No log 5.5 22 0.7890 0.6149 0.7890 0.8883
No log 6.0 24 0.7899 0.6238 0.7899 0.8887
No log 6.5 26 0.6968 0.6753 0.6968 0.8347
No log 7.0 28 0.7605 0.6348 0.7605 0.8720
No log 7.5 30 0.7046 0.6835 0.7046 0.8394
No log 8.0 32 0.6788 0.6136 0.6788 0.8239
No log 8.5 34 0.6823 0.5957 0.6823 0.8260
No log 9.0 36 0.7147 0.6644 0.7147 0.8454
No log 9.5 38 0.6626 0.6836 0.6626 0.8140
No log 10.0 40 0.6834 0.6477 0.6834 0.8267
No log 10.5 42 0.6527 0.6585 0.6527 0.8079
No log 11.0 44 0.8448 0.6713 0.8448 0.9191
No log 11.5 46 0.9311 0.6439 0.9311 0.9649
No log 12.0 48 0.6772 0.7294 0.6772 0.8229
No log 12.5 50 0.7484 0.6294 0.7484 0.8651
No log 13.0 52 0.7141 0.6162 0.7141 0.8451
No log 13.5 54 0.6410 0.6605 0.6410 0.8006
No log 14.0 56 0.6670 0.6553 0.6670 0.8167
No log 14.5 58 0.6506 0.6512 0.6506 0.8066
No log 15.0 60 0.7036 0.6572 0.7036 0.8388
No log 15.5 62 0.6330 0.6543 0.6330 0.7956
No log 16.0 64 0.7001 0.7128 0.7001 0.8367
No log 16.5 66 0.6719 0.7428 0.6719 0.8197
No log 17.0 68 0.5864 0.6627 0.5864 0.7658
No log 17.5 70 0.5719 0.6745 0.5719 0.7562
No log 18.0 72 0.6067 0.7230 0.6067 0.7789
No log 18.5 74 0.6293 0.7149 0.6293 0.7933
No log 19.0 76 0.5870 0.7113 0.5870 0.7661
No log 19.5 78 0.6339 0.6995 0.6339 0.7962
No log 20.0 80 0.6256 0.6860 0.6256 0.7909
No log 20.5 82 0.6599 0.7005 0.6599 0.8124
No log 21.0 84 0.7115 0.7121 0.7115 0.8435
No log 21.5 86 0.6271 0.6917 0.6271 0.7919
No log 22.0 88 0.5960 0.7209 0.5960 0.7720
No log 22.5 90 0.5473 0.6605 0.5473 0.7398
No log 23.0 92 0.6255 0.6737 0.6255 0.7909
No log 23.5 94 0.9046 0.6359 0.9046 0.9511
No log 24.0 96 1.0702 0.5869 1.0702 1.0345
No log 24.5 98 0.8596 0.6329 0.8596 0.9271
No log 25.0 100 0.6164 0.6903 0.6164 0.7851
No log 25.5 102 0.5722 0.6847 0.5722 0.7565
No log 26.0 104 0.5886 0.6805 0.5886 0.7672
No log 26.5 106 0.5793 0.6728 0.5793 0.7611
No log 27.0 108 0.5719 0.7053 0.5719 0.7562
No log 27.5 110 0.5880 0.6939 0.5880 0.7668
No log 28.0 112 0.6004 0.6877 0.6004 0.7749
No log 28.5 114 0.5866 0.6943 0.5866 0.7659
No log 29.0 116 0.6032 0.6977 0.6032 0.7767
No log 29.5 118 0.6240 0.6900 0.6240 0.7900
No log 30.0 120 0.6846 0.6646 0.6846 0.8274
No log 30.5 122 0.7123 0.6845 0.7123 0.8440
No log 31.0 124 0.6228 0.6813 0.6228 0.7892
No log 31.5 126 0.6008 0.6984 0.6008 0.7751
No log 32.0 128 0.6471 0.7009 0.6471 0.8044
No log 32.5 130 0.6593 0.7102 0.6593 0.8119
No log 33.0 132 0.5897 0.7122 0.5897 0.7679
No log 33.5 134 0.5778 0.7029 0.5778 0.7601
No log 34.0 136 0.5763 0.7089 0.5763 0.7592
No log 34.5 138 0.5809 0.6977 0.5809 0.7622
No log 35.0 140 0.5866 0.6863 0.5866 0.7659
No log 35.5 142 0.5925 0.6587 0.5925 0.7697
No log 36.0 144 0.5900 0.6873 0.5900 0.7681
No log 36.5 146 0.6181 0.6644 0.6181 0.7862
No log 37.0 148 0.6533 0.6708 0.6533 0.8083
No log 37.5 150 0.6263 0.6728 0.6263 0.7914
No log 38.0 152 0.5848 0.6947 0.5848 0.7647
No log 38.5 154 0.5737 0.7229 0.5737 0.7574
No log 39.0 156 0.5791 0.7300 0.5791 0.7610
No log 39.5 158 0.6346 0.7359 0.6346 0.7966
No log 40.0 160 0.6498 0.7057 0.6498 0.8061
No log 40.5 162 0.6150 0.6718 0.6150 0.7842
No log 41.0 164 0.5969 0.6626 0.5969 0.7726
No log 41.5 166 0.6199 0.6444 0.6199 0.7873
No log 42.0 168 0.6155 0.7016 0.6155 0.7845
No log 42.5 170 0.6535 0.6297 0.6535 0.8084
No log 43.0 172 0.8596 0.6330 0.8596 0.9271
No log 43.5 174 0.9150 0.6256 0.9150 0.9566
No log 44.0 176 0.8357 0.6476 0.8357 0.9142
No log 44.5 178 0.6816 0.6913 0.6816 0.8256
No log 45.0 180 0.5742 0.7082 0.5742 0.7578
No log 45.5 182 0.5626 0.7015 0.5626 0.7500
No log 46.0 184 0.5905 0.6873 0.5905 0.7685
No log 46.5 186 0.6383 0.7054 0.6383 0.7990
No log 47.0 188 0.6477 0.7120 0.6477 0.8048
No log 47.5 190 0.6913 0.6824 0.6913 0.8314
No log 48.0 192 0.6985 0.6677 0.6985 0.8357
No log 48.5 194 0.6664 0.6556 0.6664 0.8164
No log 49.0 196 0.6341 0.6643 0.6341 0.7963
No log 49.5 198 0.6096 0.6599 0.6096 0.7808
No log 50.0 200 0.5828 0.7148 0.5828 0.7634
No log 50.5 202 0.5793 0.6904 0.5793 0.7611
No log 51.0 204 0.5884 0.7066 0.5884 0.7671
No log 51.5 206 0.5947 0.6954 0.5947 0.7712
No log 52.0 208 0.5942 0.6869 0.5942 0.7708
No log 52.5 210 0.5948 0.6840 0.5948 0.7713
No log 53.0 212 0.6178 0.6306 0.6178 0.7860
No log 53.5 214 0.6390 0.6355 0.6390 0.7994
No log 54.0 216 0.6345 0.6574 0.6345 0.7966
No log 54.5 218 0.6298 0.6616 0.6298 0.7936
No log 55.0 220 0.6437 0.6528 0.6437 0.8023
No log 55.5 222 0.6287 0.6852 0.6287 0.7929
No log 56.0 224 0.6034 0.6617 0.6034 0.7768
No log 56.5 226 0.5983 0.6759 0.5983 0.7735
No log 57.0 228 0.6057 0.6954 0.6057 0.7783
No log 57.5 230 0.6553 0.7012 0.6553 0.8095
No log 58.0 232 0.7629 0.7035 0.7629 0.8735
No log 58.5 234 0.8221 0.6862 0.8221 0.9067
No log 59.0 236 0.7871 0.7035 0.7871 0.8872
No log 59.5 238 0.6983 0.6969 0.6983 0.8356
No log 60.0 240 0.6503 0.6980 0.6503 0.8064
No log 60.5 242 0.6812 0.6614 0.6812 0.8254
No log 61.0 244 0.7588 0.6566 0.7588 0.8711
No log 61.5 246 0.7822 0.6578 0.7822 0.8844
No log 62.0 248 0.6999 0.6562 0.6999 0.8366
No log 62.5 250 0.6100 0.6785 0.6100 0.7810
No log 63.0 252 0.5991 0.6331 0.5991 0.7740
No log 63.5 254 0.6230 0.6349 0.6230 0.7893
No log 64.0 256 0.6304 0.6318 0.6304 0.7939
No log 64.5 258 0.6178 0.6308 0.6178 0.7860
No log 65.0 260 0.6425 0.6518 0.6425 0.8016
No log 65.5 262 0.7050 0.6462 0.7050 0.8396
No log 66.0 264 0.7521 0.6528 0.7521 0.8673
No log 66.5 266 0.7961 0.6409 0.7961 0.8922
No log 67.0 268 0.7699 0.6229 0.7699 0.8774
No log 67.5 270 0.7201 0.6615 0.7201 0.8486
No log 68.0 272 0.6868 0.6624 0.6868 0.8287
No log 68.5 274 0.6894 0.6866 0.6894 0.8303
No log 69.0 276 0.6740 0.6859 0.6740 0.8210
No log 69.5 278 0.6934 0.7009 0.6934 0.8327
No log 70.0 280 0.7377 0.6918 0.7377 0.8589
No log 70.5 282 0.8186 0.6932 0.8186 0.9047
No log 71.0 284 0.8520 0.6616 0.8520 0.9231
No log 71.5 286 0.8425 0.6787 0.8425 0.9179
No log 72.0 288 0.8296 0.6752 0.8296 0.9108
No log 72.5 290 0.8317 0.6752 0.8317 0.9120
No log 73.0 292 0.7906 0.6783 0.7906 0.8891
No log 73.5 294 0.7214 0.6817 0.7214 0.8494
No log 74.0 296 0.6418 0.6841 0.6418 0.8011
No log 74.5 298 0.5965 0.6870 0.5965 0.7723
No log 75.0 300 0.5861 0.6661 0.5861 0.7656
No log 75.5 302 0.5891 0.6717 0.5891 0.7676
No log 76.0 304 0.5929 0.6684 0.5929 0.7700
No log 76.5 306 0.6044 0.6799 0.6044 0.7774
No log 77.0 308 0.6289 0.6544 0.6289 0.7930
No log 77.5 310 0.6611 0.6297 0.6611 0.8131
No log 78.0 312 0.6802 0.6430 0.6802 0.8247
No log 78.5 314 0.6912 0.6430 0.6912 0.8314
No log 79.0 316 0.6992 0.6504 0.6992 0.8362
No log 79.5 318 0.6764 0.6535 0.6764 0.8224
No log 80.0 320 0.6451 0.6520 0.6451 0.8032
No log 80.5 322 0.6157 0.6686 0.6157 0.7847
No log 81.0 324 0.5882 0.6997 0.5882 0.7669
No log 81.5 326 0.5782 0.6953 0.5782 0.7604
No log 82.0 328 0.5714 0.6996 0.5714 0.7559
No log 82.5 330 0.5705 0.6996 0.5705 0.7553
No log 83.0 332 0.5742 0.6919 0.5742 0.7577
No log 83.5 334 0.5815 0.6782 0.5815 0.7626
No log 84.0 336 0.5952 0.6988 0.5952 0.7715
No log 84.5 338 0.6073 0.6792 0.6073 0.7793
No log 85.0 340 0.6210 0.6633 0.6210 0.7881
No log 85.5 342 0.6309 0.6633 0.6309 0.7943
No log 86.0 344 0.6359 0.6633 0.6359 0.7974
No log 86.5 346 0.6389 0.6613 0.6389 0.7993
No log 87.0 348 0.6377 0.6524 0.6377 0.7986
No log 87.5 350 0.6307 0.6524 0.6307 0.7942
No log 88.0 352 0.6199 0.6544 0.6199 0.7873
No log 88.5 354 0.6158 0.6544 0.6158 0.7848
No log 89.0 356 0.6140 0.6653 0.6140 0.7836
No log 89.5 358 0.6127 0.6653 0.6127 0.7827
No log 90.0 360 0.6108 0.6632 0.6108 0.7815
No log 90.5 362 0.6086 0.6708 0.6086 0.7801
No log 91.0 364 0.6099 0.6708 0.6099 0.7810
No log 91.5 366 0.6104 0.6815 0.6104 0.7813
No log 92.0 368 0.6136 0.6792 0.6136 0.7834
No log 92.5 370 0.6213 0.6633 0.6213 0.7882
No log 93.0 372 0.6332 0.6633 0.6332 0.7957
No log 93.5 374 0.6441 0.6739 0.6441 0.8025
No log 94.0 376 0.6581 0.6769 0.6581 0.8112
No log 94.5 378 0.6651 0.6748 0.6651 0.8155
No log 95.0 380 0.6669 0.6606 0.6669 0.8166
No log 95.5 382 0.6630 0.6748 0.6630 0.8142
No log 96.0 384 0.6604 0.6748 0.6604 0.8127
No log 96.5 386 0.6557 0.6769 0.6557 0.8098
No log 97.0 388 0.6520 0.6769 0.6520 0.8074
No log 97.5 390 0.6495 0.6790 0.6495 0.8059
No log 98.0 392 0.6485 0.6790 0.6485 0.8053
No log 98.5 394 0.6483 0.6718 0.6483 0.8052
No log 99.0 396 0.6474 0.6718 0.6474 0.8046
No log 99.5 398 0.6466 0.6613 0.6466 0.8041
No log 100.0 400 0.6463 0.6613 0.6463 0.8039

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task1_organization

Finetuned
(4222)
this model