ArabicNewSplits8_FineTuningAraBERT_noAug_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6714
- Qwk: 0.5156
- Mse: 0.6714
- Rmse: 0.8194
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 3.9333 | 0.0094 | 3.9333 | 1.9833 |
No log | 1.3333 | 4 | 3.1065 | 0.0284 | 3.1065 | 1.7625 |
No log | 2.0 | 6 | 1.4978 | 0.1188 | 1.4978 | 1.2238 |
No log | 2.6667 | 8 | 0.8659 | 0.1086 | 0.8659 | 0.9305 |
No log | 3.3333 | 10 | 0.7877 | 0.1417 | 0.7877 | 0.8875 |
No log | 4.0 | 12 | 0.7653 | 0.1152 | 0.7653 | 0.8748 |
No log | 4.6667 | 14 | 0.7857 | 0.2197 | 0.7857 | 0.8864 |
No log | 5.3333 | 16 | 0.8088 | 0.1876 | 0.8088 | 0.8994 |
No log | 6.0 | 18 | 0.8477 | 0.2236 | 0.8477 | 0.9207 |
No log | 6.6667 | 20 | 0.8801 | 0.3965 | 0.8801 | 0.9381 |
No log | 7.3333 | 22 | 0.9859 | 0.3850 | 0.9859 | 0.9929 |
No log | 8.0 | 24 | 0.8407 | 0.4453 | 0.8407 | 0.9169 |
No log | 8.6667 | 26 | 0.8650 | 0.3596 | 0.8650 | 0.9301 |
No log | 9.3333 | 28 | 1.0178 | 0.3159 | 1.0178 | 1.0089 |
No log | 10.0 | 30 | 0.8846 | 0.3841 | 0.8846 | 0.9405 |
No log | 10.6667 | 32 | 0.8729 | 0.4134 | 0.8729 | 0.9343 |
No log | 11.3333 | 34 | 0.9629 | 0.3843 | 0.9629 | 0.9813 |
No log | 12.0 | 36 | 1.0289 | 0.3577 | 1.0289 | 1.0144 |
No log | 12.6667 | 38 | 0.9523 | 0.3680 | 0.9523 | 0.9758 |
No log | 13.3333 | 40 | 0.8803 | 0.4312 | 0.8803 | 0.9382 |
No log | 14.0 | 42 | 0.8190 | 0.4571 | 0.8190 | 0.9050 |
No log | 14.6667 | 44 | 0.8317 | 0.5034 | 0.8317 | 0.9119 |
No log | 15.3333 | 46 | 0.8657 | 0.3865 | 0.8657 | 0.9304 |
No log | 16.0 | 48 | 0.8819 | 0.4260 | 0.8819 | 0.9391 |
No log | 16.6667 | 50 | 0.8053 | 0.3936 | 0.8053 | 0.8974 |
No log | 17.3333 | 52 | 0.7487 | 0.4849 | 0.7487 | 0.8653 |
No log | 18.0 | 54 | 0.7399 | 0.5179 | 0.7399 | 0.8602 |
No log | 18.6667 | 56 | 0.7127 | 0.5501 | 0.7127 | 0.8442 |
No log | 19.3333 | 58 | 0.7189 | 0.5274 | 0.7189 | 0.8479 |
No log | 20.0 | 60 | 0.8036 | 0.4739 | 0.8036 | 0.8964 |
No log | 20.6667 | 62 | 0.8782 | 0.4078 | 0.8782 | 0.9371 |
No log | 21.3333 | 64 | 0.8042 | 0.4893 | 0.8042 | 0.8968 |
No log | 22.0 | 66 | 0.7393 | 0.5426 | 0.7393 | 0.8598 |
No log | 22.6667 | 68 | 0.6552 | 0.5967 | 0.6552 | 0.8095 |
No log | 23.3333 | 70 | 0.5832 | 0.6010 | 0.5832 | 0.7637 |
No log | 24.0 | 72 | 0.6234 | 0.5990 | 0.6234 | 0.7896 |
No log | 24.6667 | 74 | 0.7360 | 0.5391 | 0.7360 | 0.8579 |
No log | 25.3333 | 76 | 0.7060 | 0.5401 | 0.7060 | 0.8403 |
No log | 26.0 | 78 | 0.5976 | 0.5991 | 0.5976 | 0.7731 |
No log | 26.6667 | 80 | 0.6236 | 0.6085 | 0.6236 | 0.7897 |
No log | 27.3333 | 82 | 0.7617 | 0.4818 | 0.7617 | 0.8728 |
No log | 28.0 | 84 | 0.8521 | 0.4956 | 0.8521 | 0.9231 |
No log | 28.6667 | 86 | 0.8280 | 0.4847 | 0.8280 | 0.9100 |
No log | 29.3333 | 88 | 0.7597 | 0.5058 | 0.7597 | 0.8716 |
No log | 30.0 | 90 | 0.7043 | 0.5265 | 0.7043 | 0.8392 |
No log | 30.6667 | 92 | 0.6696 | 0.5449 | 0.6696 | 0.8183 |
No log | 31.3333 | 94 | 0.6765 | 0.5257 | 0.6765 | 0.8225 |
No log | 32.0 | 96 | 0.6607 | 0.4854 | 0.6607 | 0.8129 |
No log | 32.6667 | 98 | 0.7377 | 0.5375 | 0.7377 | 0.8589 |
No log | 33.3333 | 100 | 0.7520 | 0.5354 | 0.7520 | 0.8672 |
No log | 34.0 | 102 | 0.7180 | 0.5432 | 0.7180 | 0.8473 |
No log | 34.6667 | 104 | 0.6776 | 0.5701 | 0.6776 | 0.8232 |
No log | 35.3333 | 106 | 0.7057 | 0.5520 | 0.7057 | 0.8401 |
No log | 36.0 | 108 | 0.7387 | 0.5115 | 0.7387 | 0.8595 |
No log | 36.6667 | 110 | 0.7285 | 0.5400 | 0.7285 | 0.8535 |
No log | 37.3333 | 112 | 0.7033 | 0.5384 | 0.7033 | 0.8386 |
No log | 38.0 | 114 | 0.7042 | 0.5540 | 0.7042 | 0.8391 |
No log | 38.6667 | 116 | 0.6853 | 0.5401 | 0.6853 | 0.8278 |
No log | 39.3333 | 118 | 0.6426 | 0.5350 | 0.6426 | 0.8016 |
No log | 40.0 | 120 | 0.6468 | 0.5639 | 0.6468 | 0.8042 |
No log | 40.6667 | 122 | 0.7160 | 0.5316 | 0.7160 | 0.8462 |
No log | 41.3333 | 124 | 0.8095 | 0.4899 | 0.8095 | 0.8997 |
No log | 42.0 | 126 | 0.9099 | 0.4697 | 0.9099 | 0.9539 |
No log | 42.6667 | 128 | 0.9520 | 0.4376 | 0.9520 | 0.9757 |
No log | 43.3333 | 130 | 0.9413 | 0.4172 | 0.9413 | 0.9702 |
No log | 44.0 | 132 | 0.8579 | 0.4620 | 0.8579 | 0.9262 |
No log | 44.6667 | 134 | 0.8168 | 0.4568 | 0.8168 | 0.9038 |
No log | 45.3333 | 136 | 0.7457 | 0.4770 | 0.7457 | 0.8636 |
No log | 46.0 | 138 | 0.6970 | 0.5363 | 0.6970 | 0.8349 |
No log | 46.6667 | 140 | 0.7055 | 0.5308 | 0.7055 | 0.8399 |
No log | 47.3333 | 142 | 0.7795 | 0.4838 | 0.7795 | 0.8829 |
No log | 48.0 | 144 | 0.9026 | 0.4931 | 0.9026 | 0.9501 |
No log | 48.6667 | 146 | 0.9002 | 0.4913 | 0.9002 | 0.9488 |
No log | 49.3333 | 148 | 0.8216 | 0.5155 | 0.8216 | 0.9064 |
No log | 50.0 | 150 | 0.7192 | 0.5 | 0.7192 | 0.8480 |
No log | 50.6667 | 152 | 0.6756 | 0.5515 | 0.6756 | 0.8219 |
No log | 51.3333 | 154 | 0.6874 | 0.5498 | 0.6874 | 0.8291 |
No log | 52.0 | 156 | 0.7089 | 0.5245 | 0.7089 | 0.8420 |
No log | 52.6667 | 158 | 0.6861 | 0.5341 | 0.6861 | 0.8283 |
No log | 53.3333 | 160 | 0.6669 | 0.5162 | 0.6669 | 0.8166 |
No log | 54.0 | 162 | 0.6678 | 0.5175 | 0.6678 | 0.8172 |
No log | 54.6667 | 164 | 0.7092 | 0.5141 | 0.7092 | 0.8421 |
No log | 55.3333 | 166 | 0.7692 | 0.4730 | 0.7692 | 0.8770 |
No log | 56.0 | 168 | 0.7779 | 0.4156 | 0.7779 | 0.8820 |
No log | 56.6667 | 170 | 0.8330 | 0.3975 | 0.8330 | 0.9127 |
No log | 57.3333 | 172 | 0.7961 | 0.4104 | 0.7961 | 0.8923 |
No log | 58.0 | 174 | 0.7145 | 0.5035 | 0.7145 | 0.8453 |
No log | 58.6667 | 176 | 0.6759 | 0.5159 | 0.6759 | 0.8221 |
No log | 59.3333 | 178 | 0.6719 | 0.5159 | 0.6719 | 0.8197 |
No log | 60.0 | 180 | 0.6749 | 0.5242 | 0.6749 | 0.8216 |
No log | 60.6667 | 182 | 0.6978 | 0.5302 | 0.6978 | 0.8353 |
No log | 61.3333 | 184 | 0.7359 | 0.5253 | 0.7359 | 0.8578 |
No log | 62.0 | 186 | 0.7563 | 0.5448 | 0.7563 | 0.8696 |
No log | 62.6667 | 188 | 0.7452 | 0.5448 | 0.7452 | 0.8633 |
No log | 63.3333 | 190 | 0.7065 | 0.5552 | 0.7065 | 0.8405 |
No log | 64.0 | 192 | 0.6786 | 0.5517 | 0.6786 | 0.8238 |
No log | 64.6667 | 194 | 0.6687 | 0.5587 | 0.6687 | 0.8177 |
No log | 65.3333 | 196 | 0.7004 | 0.5228 | 0.7004 | 0.8369 |
No log | 66.0 | 198 | 0.7167 | 0.5228 | 0.7167 | 0.8466 |
No log | 66.6667 | 200 | 0.7327 | 0.5138 | 0.7327 | 0.8560 |
No log | 67.3333 | 202 | 0.7706 | 0.4946 | 0.7706 | 0.8778 |
No log | 68.0 | 204 | 0.7944 | 0.4995 | 0.7944 | 0.8913 |
No log | 68.6667 | 206 | 0.7765 | 0.5065 | 0.7765 | 0.8812 |
No log | 69.3333 | 208 | 0.7269 | 0.5185 | 0.7269 | 0.8526 |
No log | 70.0 | 210 | 0.6693 | 0.5610 | 0.6693 | 0.8181 |
No log | 70.6667 | 212 | 0.6532 | 0.5427 | 0.6532 | 0.8082 |
No log | 71.3333 | 214 | 0.6493 | 0.5599 | 0.6493 | 0.8058 |
No log | 72.0 | 216 | 0.6607 | 0.5818 | 0.6607 | 0.8129 |
No log | 72.6667 | 218 | 0.6760 | 0.5597 | 0.6760 | 0.8222 |
No log | 73.3333 | 220 | 0.6780 | 0.5597 | 0.6780 | 0.8234 |
No log | 74.0 | 222 | 0.6769 | 0.5744 | 0.6769 | 0.8227 |
No log | 74.6667 | 224 | 0.6671 | 0.5763 | 0.6671 | 0.8167 |
No log | 75.3333 | 226 | 0.6615 | 0.5763 | 0.6615 | 0.8133 |
No log | 76.0 | 228 | 0.6669 | 0.5576 | 0.6669 | 0.8167 |
No log | 76.6667 | 230 | 0.6772 | 0.5269 | 0.6772 | 0.8229 |
No log | 77.3333 | 232 | 0.6880 | 0.55 | 0.6880 | 0.8294 |
No log | 78.0 | 234 | 0.6937 | 0.5412 | 0.6937 | 0.8329 |
No log | 78.6667 | 236 | 0.6773 | 0.5570 | 0.6773 | 0.8230 |
No log | 79.3333 | 238 | 0.6547 | 0.5607 | 0.6547 | 0.8091 |
No log | 80.0 | 240 | 0.6534 | 0.5589 | 0.6534 | 0.8084 |
No log | 80.6667 | 242 | 0.6587 | 0.5538 | 0.6587 | 0.8116 |
No log | 81.3333 | 244 | 0.6634 | 0.5506 | 0.6634 | 0.8145 |
No log | 82.0 | 246 | 0.6711 | 0.5477 | 0.6711 | 0.8192 |
No log | 82.6667 | 248 | 0.6724 | 0.5617 | 0.6724 | 0.8200 |
No log | 83.3333 | 250 | 0.6700 | 0.5778 | 0.6700 | 0.8185 |
No log | 84.0 | 252 | 0.6626 | 0.6010 | 0.6626 | 0.8140 |
No log | 84.6667 | 254 | 0.6548 | 0.6010 | 0.6548 | 0.8092 |
No log | 85.3333 | 256 | 0.6542 | 0.5819 | 0.6542 | 0.8088 |
No log | 86.0 | 258 | 0.6516 | 0.5873 | 0.6516 | 0.8072 |
No log | 86.6667 | 260 | 0.6570 | 0.5358 | 0.6570 | 0.8106 |
No log | 87.3333 | 262 | 0.6662 | 0.5359 | 0.6662 | 0.8162 |
No log | 88.0 | 264 | 0.6673 | 0.5374 | 0.6673 | 0.8169 |
No log | 88.6667 | 266 | 0.6587 | 0.5592 | 0.6587 | 0.8116 |
No log | 89.3333 | 268 | 0.6560 | 0.5502 | 0.6560 | 0.8100 |
No log | 90.0 | 270 | 0.6508 | 0.5519 | 0.6508 | 0.8068 |
No log | 90.6667 | 272 | 0.6492 | 0.5519 | 0.6492 | 0.8058 |
No log | 91.3333 | 274 | 0.6478 | 0.5668 | 0.6478 | 0.8049 |
No log | 92.0 | 276 | 0.6531 | 0.5519 | 0.6531 | 0.8081 |
No log | 92.6667 | 278 | 0.6605 | 0.5147 | 0.6605 | 0.8127 |
No log | 93.3333 | 280 | 0.6680 | 0.5147 | 0.6680 | 0.8173 |
No log | 94.0 | 282 | 0.6705 | 0.5134 | 0.6705 | 0.8189 |
No log | 94.6667 | 284 | 0.6688 | 0.5156 | 0.6688 | 0.8178 |
No log | 95.3333 | 286 | 0.6657 | 0.5305 | 0.6657 | 0.8159 |
No log | 96.0 | 288 | 0.6640 | 0.5448 | 0.6640 | 0.8149 |
No log | 96.6667 | 290 | 0.6647 | 0.5448 | 0.6647 | 0.8153 |
No log | 97.3333 | 292 | 0.6670 | 0.5305 | 0.6670 | 0.8167 |
No log | 98.0 | 294 | 0.6696 | 0.5156 | 0.6696 | 0.8183 |
No log | 98.6667 | 296 | 0.6715 | 0.5156 | 0.6715 | 0.8194 |
No log | 99.3333 | 298 | 0.6717 | 0.5156 | 0.6717 | 0.8196 |
No log | 100.0 | 300 | 0.6714 | 0.5156 | 0.6714 | 0.8194 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task2_organization
Base model
aubmindlab/bert-base-arabertv02