ArabicNewSplits8_FineTuningAraBERT_noAug_task2_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6714
  • Qwk: 0.5156
  • Mse: 0.6714
  • Rmse: 0.8194

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 3.9333 0.0094 3.9333 1.9833
No log 1.3333 4 3.1065 0.0284 3.1065 1.7625
No log 2.0 6 1.4978 0.1188 1.4978 1.2238
No log 2.6667 8 0.8659 0.1086 0.8659 0.9305
No log 3.3333 10 0.7877 0.1417 0.7877 0.8875
No log 4.0 12 0.7653 0.1152 0.7653 0.8748
No log 4.6667 14 0.7857 0.2197 0.7857 0.8864
No log 5.3333 16 0.8088 0.1876 0.8088 0.8994
No log 6.0 18 0.8477 0.2236 0.8477 0.9207
No log 6.6667 20 0.8801 0.3965 0.8801 0.9381
No log 7.3333 22 0.9859 0.3850 0.9859 0.9929
No log 8.0 24 0.8407 0.4453 0.8407 0.9169
No log 8.6667 26 0.8650 0.3596 0.8650 0.9301
No log 9.3333 28 1.0178 0.3159 1.0178 1.0089
No log 10.0 30 0.8846 0.3841 0.8846 0.9405
No log 10.6667 32 0.8729 0.4134 0.8729 0.9343
No log 11.3333 34 0.9629 0.3843 0.9629 0.9813
No log 12.0 36 1.0289 0.3577 1.0289 1.0144
No log 12.6667 38 0.9523 0.3680 0.9523 0.9758
No log 13.3333 40 0.8803 0.4312 0.8803 0.9382
No log 14.0 42 0.8190 0.4571 0.8190 0.9050
No log 14.6667 44 0.8317 0.5034 0.8317 0.9119
No log 15.3333 46 0.8657 0.3865 0.8657 0.9304
No log 16.0 48 0.8819 0.4260 0.8819 0.9391
No log 16.6667 50 0.8053 0.3936 0.8053 0.8974
No log 17.3333 52 0.7487 0.4849 0.7487 0.8653
No log 18.0 54 0.7399 0.5179 0.7399 0.8602
No log 18.6667 56 0.7127 0.5501 0.7127 0.8442
No log 19.3333 58 0.7189 0.5274 0.7189 0.8479
No log 20.0 60 0.8036 0.4739 0.8036 0.8964
No log 20.6667 62 0.8782 0.4078 0.8782 0.9371
No log 21.3333 64 0.8042 0.4893 0.8042 0.8968
No log 22.0 66 0.7393 0.5426 0.7393 0.8598
No log 22.6667 68 0.6552 0.5967 0.6552 0.8095
No log 23.3333 70 0.5832 0.6010 0.5832 0.7637
No log 24.0 72 0.6234 0.5990 0.6234 0.7896
No log 24.6667 74 0.7360 0.5391 0.7360 0.8579
No log 25.3333 76 0.7060 0.5401 0.7060 0.8403
No log 26.0 78 0.5976 0.5991 0.5976 0.7731
No log 26.6667 80 0.6236 0.6085 0.6236 0.7897
No log 27.3333 82 0.7617 0.4818 0.7617 0.8728
No log 28.0 84 0.8521 0.4956 0.8521 0.9231
No log 28.6667 86 0.8280 0.4847 0.8280 0.9100
No log 29.3333 88 0.7597 0.5058 0.7597 0.8716
No log 30.0 90 0.7043 0.5265 0.7043 0.8392
No log 30.6667 92 0.6696 0.5449 0.6696 0.8183
No log 31.3333 94 0.6765 0.5257 0.6765 0.8225
No log 32.0 96 0.6607 0.4854 0.6607 0.8129
No log 32.6667 98 0.7377 0.5375 0.7377 0.8589
No log 33.3333 100 0.7520 0.5354 0.7520 0.8672
No log 34.0 102 0.7180 0.5432 0.7180 0.8473
No log 34.6667 104 0.6776 0.5701 0.6776 0.8232
No log 35.3333 106 0.7057 0.5520 0.7057 0.8401
No log 36.0 108 0.7387 0.5115 0.7387 0.8595
No log 36.6667 110 0.7285 0.5400 0.7285 0.8535
No log 37.3333 112 0.7033 0.5384 0.7033 0.8386
No log 38.0 114 0.7042 0.5540 0.7042 0.8391
No log 38.6667 116 0.6853 0.5401 0.6853 0.8278
No log 39.3333 118 0.6426 0.5350 0.6426 0.8016
No log 40.0 120 0.6468 0.5639 0.6468 0.8042
No log 40.6667 122 0.7160 0.5316 0.7160 0.8462
No log 41.3333 124 0.8095 0.4899 0.8095 0.8997
No log 42.0 126 0.9099 0.4697 0.9099 0.9539
No log 42.6667 128 0.9520 0.4376 0.9520 0.9757
No log 43.3333 130 0.9413 0.4172 0.9413 0.9702
No log 44.0 132 0.8579 0.4620 0.8579 0.9262
No log 44.6667 134 0.8168 0.4568 0.8168 0.9038
No log 45.3333 136 0.7457 0.4770 0.7457 0.8636
No log 46.0 138 0.6970 0.5363 0.6970 0.8349
No log 46.6667 140 0.7055 0.5308 0.7055 0.8399
No log 47.3333 142 0.7795 0.4838 0.7795 0.8829
No log 48.0 144 0.9026 0.4931 0.9026 0.9501
No log 48.6667 146 0.9002 0.4913 0.9002 0.9488
No log 49.3333 148 0.8216 0.5155 0.8216 0.9064
No log 50.0 150 0.7192 0.5 0.7192 0.8480
No log 50.6667 152 0.6756 0.5515 0.6756 0.8219
No log 51.3333 154 0.6874 0.5498 0.6874 0.8291
No log 52.0 156 0.7089 0.5245 0.7089 0.8420
No log 52.6667 158 0.6861 0.5341 0.6861 0.8283
No log 53.3333 160 0.6669 0.5162 0.6669 0.8166
No log 54.0 162 0.6678 0.5175 0.6678 0.8172
No log 54.6667 164 0.7092 0.5141 0.7092 0.8421
No log 55.3333 166 0.7692 0.4730 0.7692 0.8770
No log 56.0 168 0.7779 0.4156 0.7779 0.8820
No log 56.6667 170 0.8330 0.3975 0.8330 0.9127
No log 57.3333 172 0.7961 0.4104 0.7961 0.8923
No log 58.0 174 0.7145 0.5035 0.7145 0.8453
No log 58.6667 176 0.6759 0.5159 0.6759 0.8221
No log 59.3333 178 0.6719 0.5159 0.6719 0.8197
No log 60.0 180 0.6749 0.5242 0.6749 0.8216
No log 60.6667 182 0.6978 0.5302 0.6978 0.8353
No log 61.3333 184 0.7359 0.5253 0.7359 0.8578
No log 62.0 186 0.7563 0.5448 0.7563 0.8696
No log 62.6667 188 0.7452 0.5448 0.7452 0.8633
No log 63.3333 190 0.7065 0.5552 0.7065 0.8405
No log 64.0 192 0.6786 0.5517 0.6786 0.8238
No log 64.6667 194 0.6687 0.5587 0.6687 0.8177
No log 65.3333 196 0.7004 0.5228 0.7004 0.8369
No log 66.0 198 0.7167 0.5228 0.7167 0.8466
No log 66.6667 200 0.7327 0.5138 0.7327 0.8560
No log 67.3333 202 0.7706 0.4946 0.7706 0.8778
No log 68.0 204 0.7944 0.4995 0.7944 0.8913
No log 68.6667 206 0.7765 0.5065 0.7765 0.8812
No log 69.3333 208 0.7269 0.5185 0.7269 0.8526
No log 70.0 210 0.6693 0.5610 0.6693 0.8181
No log 70.6667 212 0.6532 0.5427 0.6532 0.8082
No log 71.3333 214 0.6493 0.5599 0.6493 0.8058
No log 72.0 216 0.6607 0.5818 0.6607 0.8129
No log 72.6667 218 0.6760 0.5597 0.6760 0.8222
No log 73.3333 220 0.6780 0.5597 0.6780 0.8234
No log 74.0 222 0.6769 0.5744 0.6769 0.8227
No log 74.6667 224 0.6671 0.5763 0.6671 0.8167
No log 75.3333 226 0.6615 0.5763 0.6615 0.8133
No log 76.0 228 0.6669 0.5576 0.6669 0.8167
No log 76.6667 230 0.6772 0.5269 0.6772 0.8229
No log 77.3333 232 0.6880 0.55 0.6880 0.8294
No log 78.0 234 0.6937 0.5412 0.6937 0.8329
No log 78.6667 236 0.6773 0.5570 0.6773 0.8230
No log 79.3333 238 0.6547 0.5607 0.6547 0.8091
No log 80.0 240 0.6534 0.5589 0.6534 0.8084
No log 80.6667 242 0.6587 0.5538 0.6587 0.8116
No log 81.3333 244 0.6634 0.5506 0.6634 0.8145
No log 82.0 246 0.6711 0.5477 0.6711 0.8192
No log 82.6667 248 0.6724 0.5617 0.6724 0.8200
No log 83.3333 250 0.6700 0.5778 0.6700 0.8185
No log 84.0 252 0.6626 0.6010 0.6626 0.8140
No log 84.6667 254 0.6548 0.6010 0.6548 0.8092
No log 85.3333 256 0.6542 0.5819 0.6542 0.8088
No log 86.0 258 0.6516 0.5873 0.6516 0.8072
No log 86.6667 260 0.6570 0.5358 0.6570 0.8106
No log 87.3333 262 0.6662 0.5359 0.6662 0.8162
No log 88.0 264 0.6673 0.5374 0.6673 0.8169
No log 88.6667 266 0.6587 0.5592 0.6587 0.8116
No log 89.3333 268 0.6560 0.5502 0.6560 0.8100
No log 90.0 270 0.6508 0.5519 0.6508 0.8068
No log 90.6667 272 0.6492 0.5519 0.6492 0.8058
No log 91.3333 274 0.6478 0.5668 0.6478 0.8049
No log 92.0 276 0.6531 0.5519 0.6531 0.8081
No log 92.6667 278 0.6605 0.5147 0.6605 0.8127
No log 93.3333 280 0.6680 0.5147 0.6680 0.8173
No log 94.0 282 0.6705 0.5134 0.6705 0.8189
No log 94.6667 284 0.6688 0.5156 0.6688 0.8178
No log 95.3333 286 0.6657 0.5305 0.6657 0.8159
No log 96.0 288 0.6640 0.5448 0.6640 0.8149
No log 96.6667 290 0.6647 0.5448 0.6647 0.8153
No log 97.3333 292 0.6670 0.5305 0.6670 0.8167
No log 98.0 294 0.6696 0.5156 0.6696 0.8183
No log 98.6667 296 0.6715 0.5156 0.6715 0.8194
No log 99.3333 298 0.6717 0.5156 0.6717 0.8196
No log 100.0 300 0.6714 0.5156 0.6714 0.8194

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task2_organization

Finetuned
(4222)
this model