ArabicNewSplits8_FineTuningAraBERT_noAug_task3_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5796
- Qwk: 0.3828
- Mse: 0.5796
- Rmse: 0.7613
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.6667 | 2 | 3.7564 | 0.0 | 3.7564 | 1.9382 |
No log | 1.3333 | 4 | 2.1125 | -0.0464 | 2.1125 | 1.4535 |
No log | 2.0 | 6 | 0.9384 | 0.0740 | 0.9384 | 0.9687 |
No log | 2.6667 | 8 | 0.5111 | 0.2470 | 0.5111 | 0.7149 |
No log | 3.3333 | 10 | 0.5326 | 0.1544 | 0.5326 | 0.7298 |
No log | 4.0 | 12 | 0.5032 | 0.1842 | 0.5032 | 0.7094 |
No log | 4.6667 | 14 | 0.5492 | 0.1597 | 0.5492 | 0.7411 |
No log | 5.3333 | 16 | 0.5470 | 0.0653 | 0.5470 | 0.7396 |
No log | 6.0 | 18 | 0.5204 | 0.2405 | 0.5204 | 0.7214 |
No log | 6.6667 | 20 | 0.6030 | 0.3109 | 0.6030 | 0.7765 |
No log | 7.3333 | 22 | 0.5992 | 0.3416 | 0.5992 | 0.7741 |
No log | 8.0 | 24 | 0.9672 | 0.1132 | 0.9672 | 0.9834 |
No log | 8.6667 | 26 | 0.7700 | 0.2313 | 0.7700 | 0.8775 |
No log | 9.3333 | 28 | 0.8126 | 0.2709 | 0.8126 | 0.9015 |
No log | 10.0 | 30 | 0.6651 | 0.2674 | 0.6651 | 0.8156 |
No log | 10.6667 | 32 | 0.9214 | 0.1527 | 0.9214 | 0.9599 |
No log | 11.3333 | 34 | 0.8128 | 0.1633 | 0.8128 | 0.9016 |
No log | 12.0 | 36 | 0.6493 | 0.2222 | 0.6493 | 0.8058 |
No log | 12.6667 | 38 | 0.6881 | 0.2212 | 0.6881 | 0.8295 |
No log | 13.3333 | 40 | 0.6895 | 0.2198 | 0.6895 | 0.8304 |
No log | 14.0 | 42 | 0.7659 | 0.3136 | 0.7659 | 0.8752 |
No log | 14.6667 | 44 | 0.7675 | 0.3136 | 0.7675 | 0.8761 |
No log | 15.3333 | 46 | 0.7291 | 0.1964 | 0.7291 | 0.8539 |
No log | 16.0 | 48 | 0.7371 | 0.1918 | 0.7371 | 0.8585 |
No log | 16.6667 | 50 | 0.6185 | 0.2923 | 0.6185 | 0.7865 |
No log | 17.3333 | 52 | 0.6598 | 0.2093 | 0.6598 | 0.8123 |
No log | 18.0 | 54 | 0.5984 | 0.1029 | 0.5984 | 0.7736 |
No log | 18.6667 | 56 | 0.7167 | 0.1423 | 0.7167 | 0.8466 |
No log | 19.3333 | 58 | 0.6259 | 0.2017 | 0.6259 | 0.7911 |
No log | 20.0 | 60 | 0.6114 | 0.3149 | 0.6114 | 0.7819 |
No log | 20.6667 | 62 | 0.6216 | 0.2795 | 0.6216 | 0.7884 |
No log | 21.3333 | 64 | 0.7252 | 0.1365 | 0.7252 | 0.8516 |
No log | 22.0 | 66 | 0.8477 | 0.1620 | 0.8477 | 0.9207 |
No log | 22.6667 | 68 | 0.6088 | 0.3655 | 0.6088 | 0.7802 |
No log | 23.3333 | 70 | 0.6748 | 0.2151 | 0.6748 | 0.8215 |
No log | 24.0 | 72 | 0.5741 | 0.3327 | 0.5741 | 0.7577 |
No log | 24.6667 | 74 | 0.6138 | 0.1870 | 0.6138 | 0.7834 |
No log | 25.3333 | 76 | 0.6094 | 0.2450 | 0.6094 | 0.7806 |
No log | 26.0 | 78 | 0.5562 | 0.3521 | 0.5562 | 0.7458 |
No log | 26.6667 | 80 | 0.5740 | 0.3841 | 0.5740 | 0.7576 |
No log | 27.3333 | 82 | 0.7036 | 0.1747 | 0.7036 | 0.8388 |
No log | 28.0 | 84 | 0.6490 | 0.2295 | 0.6490 | 0.8056 |
No log | 28.6667 | 86 | 0.6288 | 0.1889 | 0.6288 | 0.7930 |
No log | 29.3333 | 88 | 0.6417 | 0.1940 | 0.6417 | 0.8011 |
No log | 30.0 | 90 | 0.6549 | 0.1904 | 0.6549 | 0.8092 |
No log | 30.6667 | 92 | 0.5789 | 0.2051 | 0.5789 | 0.7609 |
No log | 31.3333 | 94 | 0.5853 | 0.1934 | 0.5853 | 0.7651 |
No log | 32.0 | 96 | 0.5992 | 0.3107 | 0.5992 | 0.7741 |
No log | 32.6667 | 98 | 0.9428 | 0.1885 | 0.9428 | 0.9710 |
No log | 33.3333 | 100 | 1.1201 | 0.1443 | 1.1201 | 1.0583 |
No log | 34.0 | 102 | 0.7434 | 0.2101 | 0.7434 | 0.8622 |
No log | 34.6667 | 104 | 0.6690 | 0.3275 | 0.6690 | 0.8179 |
No log | 35.3333 | 106 | 0.6602 | 0.3868 | 0.6602 | 0.8125 |
No log | 36.0 | 108 | 0.5896 | 0.4023 | 0.5896 | 0.7679 |
No log | 36.6667 | 110 | 0.6188 | 0.2697 | 0.6188 | 0.7867 |
No log | 37.3333 | 112 | 0.5646 | 0.4023 | 0.5646 | 0.7514 |
No log | 38.0 | 114 | 0.5554 | 0.3543 | 0.5554 | 0.7453 |
No log | 38.6667 | 116 | 0.6494 | 0.2928 | 0.6494 | 0.8059 |
No log | 39.3333 | 118 | 0.5946 | 0.2872 | 0.5946 | 0.7711 |
No log | 40.0 | 120 | 0.5958 | 0.2847 | 0.5958 | 0.7719 |
No log | 40.6667 | 122 | 0.5830 | 0.2805 | 0.5830 | 0.7636 |
No log | 41.3333 | 124 | 0.5896 | 0.3256 | 0.5896 | 0.7678 |
No log | 42.0 | 126 | 0.6523 | 0.2354 | 0.6523 | 0.8076 |
No log | 42.6667 | 128 | 0.6406 | 0.2922 | 0.6406 | 0.8004 |
No log | 43.3333 | 130 | 0.5813 | 0.2850 | 0.5813 | 0.7624 |
No log | 44.0 | 132 | 0.6464 | 0.1943 | 0.6464 | 0.8040 |
No log | 44.6667 | 134 | 0.5808 | 0.3519 | 0.5808 | 0.7621 |
No log | 45.3333 | 136 | 0.5392 | 0.2736 | 0.5392 | 0.7343 |
No log | 46.0 | 138 | 0.5365 | 0.2250 | 0.5365 | 0.7325 |
No log | 46.6667 | 140 | 0.5390 | 0.0553 | 0.5390 | 0.7342 |
No log | 47.3333 | 142 | 0.5755 | 0.1019 | 0.5755 | 0.7586 |
No log | 48.0 | 144 | 0.5715 | 0.0982 | 0.5715 | 0.7560 |
No log | 48.6667 | 146 | 0.5471 | 0.2640 | 0.5471 | 0.7397 |
No log | 49.3333 | 148 | 0.5900 | 0.2985 | 0.5900 | 0.7681 |
No log | 50.0 | 150 | 0.5944 | 0.3380 | 0.5944 | 0.7710 |
No log | 50.6667 | 152 | 0.5782 | 0.3202 | 0.5782 | 0.7604 |
No log | 51.3333 | 154 | 0.5748 | 0.3543 | 0.5748 | 0.7582 |
No log | 52.0 | 156 | 0.6213 | 0.1585 | 0.6213 | 0.7882 |
No log | 52.6667 | 158 | 0.5877 | 0.2748 | 0.5877 | 0.7666 |
No log | 53.3333 | 160 | 0.5677 | 0.2423 | 0.5677 | 0.7535 |
No log | 54.0 | 162 | 0.5553 | 0.2564 | 0.5553 | 0.7452 |
No log | 54.6667 | 164 | 0.5583 | 0.1520 | 0.5583 | 0.7472 |
No log | 55.3333 | 166 | 0.6110 | 0.0793 | 0.6110 | 0.7817 |
No log | 56.0 | 168 | 0.6696 | 0.2138 | 0.6696 | 0.8183 |
No log | 56.6667 | 170 | 0.6429 | 0.1148 | 0.6429 | 0.8018 |
No log | 57.3333 | 172 | 0.5756 | 0.3696 | 0.5756 | 0.7587 |
No log | 58.0 | 174 | 0.6037 | 0.3052 | 0.6037 | 0.7770 |
No log | 58.6667 | 176 | 0.6507 | 0.2999 | 0.6507 | 0.8067 |
No log | 59.3333 | 178 | 0.5970 | 0.3052 | 0.5970 | 0.7727 |
No log | 60.0 | 180 | 0.5701 | 0.2956 | 0.5701 | 0.7550 |
No log | 60.6667 | 182 | 0.5676 | 0.2524 | 0.5676 | 0.7534 |
No log | 61.3333 | 184 | 0.5744 | 0.3092 | 0.5744 | 0.7579 |
No log | 62.0 | 186 | 0.5831 | 0.3007 | 0.5831 | 0.7636 |
No log | 62.6667 | 188 | 0.5900 | 0.2540 | 0.5900 | 0.7681 |
No log | 63.3333 | 190 | 0.5928 | 0.3007 | 0.5928 | 0.7700 |
No log | 64.0 | 192 | 0.5925 | 0.1570 | 0.5925 | 0.7697 |
No log | 64.6667 | 194 | 0.5855 | 0.1061 | 0.5855 | 0.7652 |
No log | 65.3333 | 196 | 0.5739 | 0.1101 | 0.5739 | 0.7575 |
No log | 66.0 | 198 | 0.5610 | 0.1622 | 0.5610 | 0.7490 |
No log | 66.6667 | 200 | 0.5536 | 0.1622 | 0.5536 | 0.7440 |
No log | 67.3333 | 202 | 0.5490 | 0.1622 | 0.5490 | 0.7409 |
No log | 68.0 | 204 | 0.5494 | 0.2564 | 0.5494 | 0.7412 |
No log | 68.6667 | 206 | 0.5558 | 0.2821 | 0.5558 | 0.7455 |
No log | 69.3333 | 208 | 0.5531 | 0.2220 | 0.5531 | 0.7437 |
No log | 70.0 | 210 | 0.5397 | 0.3415 | 0.5397 | 0.7347 |
No log | 70.6667 | 212 | 0.5334 | 0.3915 | 0.5334 | 0.7303 |
No log | 71.3333 | 214 | 0.5390 | 0.3521 | 0.5390 | 0.7341 |
No log | 72.0 | 216 | 0.5409 | 0.3521 | 0.5409 | 0.7355 |
No log | 72.6667 | 218 | 0.5429 | 0.3521 | 0.5429 | 0.7368 |
No log | 73.3333 | 220 | 0.5443 | 0.3521 | 0.5443 | 0.7378 |
No log | 74.0 | 222 | 0.5499 | 0.2492 | 0.5499 | 0.7415 |
No log | 74.6667 | 224 | 0.5622 | 0.2034 | 0.5622 | 0.7498 |
No log | 75.3333 | 226 | 0.5809 | 0.2806 | 0.5809 | 0.7622 |
No log | 76.0 | 228 | 0.5955 | 0.2205 | 0.5955 | 0.7717 |
No log | 76.6667 | 230 | 0.5906 | 0.2205 | 0.5906 | 0.7685 |
No log | 77.3333 | 232 | 0.5853 | 0.2806 | 0.5853 | 0.7651 |
No log | 78.0 | 234 | 0.5749 | 0.2978 | 0.5749 | 0.7582 |
No log | 78.6667 | 236 | 0.5635 | 0.2927 | 0.5635 | 0.7507 |
No log | 79.3333 | 238 | 0.5759 | 0.2540 | 0.5759 | 0.7589 |
No log | 80.0 | 240 | 0.6189 | 0.3052 | 0.6189 | 0.7867 |
No log | 80.6667 | 242 | 0.6669 | 0.2450 | 0.6669 | 0.8166 |
No log | 81.3333 | 244 | 0.6621 | 0.2450 | 0.6621 | 0.8137 |
No log | 82.0 | 246 | 0.6159 | 0.3052 | 0.6159 | 0.7848 |
No log | 82.6667 | 248 | 0.5722 | 0.2612 | 0.5722 | 0.7564 |
No log | 83.3333 | 250 | 0.5602 | 0.2114 | 0.5602 | 0.7485 |
No log | 84.0 | 252 | 0.5704 | 0.2034 | 0.5704 | 0.7552 |
No log | 84.6667 | 254 | 0.5751 | 0.2034 | 0.5751 | 0.7583 |
No log | 85.3333 | 256 | 0.5732 | 0.2034 | 0.5732 | 0.7571 |
No log | 86.0 | 258 | 0.5750 | 0.2993 | 0.5750 | 0.7583 |
No log | 86.6667 | 260 | 0.5745 | 0.3816 | 0.5745 | 0.7580 |
No log | 87.3333 | 262 | 0.5710 | 0.3816 | 0.5710 | 0.7556 |
No log | 88.0 | 264 | 0.5743 | 0.2956 | 0.5743 | 0.7578 |
No log | 88.6667 | 266 | 0.5887 | 0.3052 | 0.5887 | 0.7673 |
No log | 89.3333 | 268 | 0.5982 | 0.3052 | 0.5982 | 0.7734 |
No log | 90.0 | 270 | 0.5983 | 0.3052 | 0.5983 | 0.7735 |
No log | 90.6667 | 272 | 0.5956 | 0.3052 | 0.5956 | 0.7718 |
No log | 91.3333 | 274 | 0.5864 | 0.3052 | 0.5864 | 0.7658 |
No log | 92.0 | 276 | 0.5801 | 0.3052 | 0.5801 | 0.7617 |
No log | 92.6667 | 278 | 0.5776 | 0.3052 | 0.5776 | 0.7600 |
No log | 93.3333 | 280 | 0.5798 | 0.3052 | 0.5798 | 0.7614 |
No log | 94.0 | 282 | 0.5814 | 0.3052 | 0.5814 | 0.7625 |
No log | 94.6667 | 284 | 0.5811 | 0.2971 | 0.5811 | 0.7623 |
No log | 95.3333 | 286 | 0.5799 | 0.3442 | 0.5799 | 0.7615 |
No log | 96.0 | 288 | 0.5803 | 0.3442 | 0.5803 | 0.7618 |
No log | 96.6667 | 290 | 0.5803 | 0.3442 | 0.5803 | 0.7618 |
No log | 97.3333 | 292 | 0.5803 | 0.3828 | 0.5803 | 0.7618 |
No log | 98.0 | 294 | 0.5800 | 0.3828 | 0.5800 | 0.7616 |
No log | 98.6667 | 296 | 0.5799 | 0.3828 | 0.5799 | 0.7615 |
No log | 99.3333 | 298 | 0.5797 | 0.3828 | 0.5797 | 0.7614 |
No log | 100.0 | 300 | 0.5796 | 0.3828 | 0.5796 | 0.7613 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task3_organization
Base model
aubmindlab/bert-base-arabertv02