ArabicNewSplits8_FineTuningAraBERT_noAug_task3_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5796
  • Qwk: 0.3828
  • Mse: 0.5796
  • Rmse: 0.7613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 3.7564 0.0 3.7564 1.9382
No log 1.3333 4 2.1125 -0.0464 2.1125 1.4535
No log 2.0 6 0.9384 0.0740 0.9384 0.9687
No log 2.6667 8 0.5111 0.2470 0.5111 0.7149
No log 3.3333 10 0.5326 0.1544 0.5326 0.7298
No log 4.0 12 0.5032 0.1842 0.5032 0.7094
No log 4.6667 14 0.5492 0.1597 0.5492 0.7411
No log 5.3333 16 0.5470 0.0653 0.5470 0.7396
No log 6.0 18 0.5204 0.2405 0.5204 0.7214
No log 6.6667 20 0.6030 0.3109 0.6030 0.7765
No log 7.3333 22 0.5992 0.3416 0.5992 0.7741
No log 8.0 24 0.9672 0.1132 0.9672 0.9834
No log 8.6667 26 0.7700 0.2313 0.7700 0.8775
No log 9.3333 28 0.8126 0.2709 0.8126 0.9015
No log 10.0 30 0.6651 0.2674 0.6651 0.8156
No log 10.6667 32 0.9214 0.1527 0.9214 0.9599
No log 11.3333 34 0.8128 0.1633 0.8128 0.9016
No log 12.0 36 0.6493 0.2222 0.6493 0.8058
No log 12.6667 38 0.6881 0.2212 0.6881 0.8295
No log 13.3333 40 0.6895 0.2198 0.6895 0.8304
No log 14.0 42 0.7659 0.3136 0.7659 0.8752
No log 14.6667 44 0.7675 0.3136 0.7675 0.8761
No log 15.3333 46 0.7291 0.1964 0.7291 0.8539
No log 16.0 48 0.7371 0.1918 0.7371 0.8585
No log 16.6667 50 0.6185 0.2923 0.6185 0.7865
No log 17.3333 52 0.6598 0.2093 0.6598 0.8123
No log 18.0 54 0.5984 0.1029 0.5984 0.7736
No log 18.6667 56 0.7167 0.1423 0.7167 0.8466
No log 19.3333 58 0.6259 0.2017 0.6259 0.7911
No log 20.0 60 0.6114 0.3149 0.6114 0.7819
No log 20.6667 62 0.6216 0.2795 0.6216 0.7884
No log 21.3333 64 0.7252 0.1365 0.7252 0.8516
No log 22.0 66 0.8477 0.1620 0.8477 0.9207
No log 22.6667 68 0.6088 0.3655 0.6088 0.7802
No log 23.3333 70 0.6748 0.2151 0.6748 0.8215
No log 24.0 72 0.5741 0.3327 0.5741 0.7577
No log 24.6667 74 0.6138 0.1870 0.6138 0.7834
No log 25.3333 76 0.6094 0.2450 0.6094 0.7806
No log 26.0 78 0.5562 0.3521 0.5562 0.7458
No log 26.6667 80 0.5740 0.3841 0.5740 0.7576
No log 27.3333 82 0.7036 0.1747 0.7036 0.8388
No log 28.0 84 0.6490 0.2295 0.6490 0.8056
No log 28.6667 86 0.6288 0.1889 0.6288 0.7930
No log 29.3333 88 0.6417 0.1940 0.6417 0.8011
No log 30.0 90 0.6549 0.1904 0.6549 0.8092
No log 30.6667 92 0.5789 0.2051 0.5789 0.7609
No log 31.3333 94 0.5853 0.1934 0.5853 0.7651
No log 32.0 96 0.5992 0.3107 0.5992 0.7741
No log 32.6667 98 0.9428 0.1885 0.9428 0.9710
No log 33.3333 100 1.1201 0.1443 1.1201 1.0583
No log 34.0 102 0.7434 0.2101 0.7434 0.8622
No log 34.6667 104 0.6690 0.3275 0.6690 0.8179
No log 35.3333 106 0.6602 0.3868 0.6602 0.8125
No log 36.0 108 0.5896 0.4023 0.5896 0.7679
No log 36.6667 110 0.6188 0.2697 0.6188 0.7867
No log 37.3333 112 0.5646 0.4023 0.5646 0.7514
No log 38.0 114 0.5554 0.3543 0.5554 0.7453
No log 38.6667 116 0.6494 0.2928 0.6494 0.8059
No log 39.3333 118 0.5946 0.2872 0.5946 0.7711
No log 40.0 120 0.5958 0.2847 0.5958 0.7719
No log 40.6667 122 0.5830 0.2805 0.5830 0.7636
No log 41.3333 124 0.5896 0.3256 0.5896 0.7678
No log 42.0 126 0.6523 0.2354 0.6523 0.8076
No log 42.6667 128 0.6406 0.2922 0.6406 0.8004
No log 43.3333 130 0.5813 0.2850 0.5813 0.7624
No log 44.0 132 0.6464 0.1943 0.6464 0.8040
No log 44.6667 134 0.5808 0.3519 0.5808 0.7621
No log 45.3333 136 0.5392 0.2736 0.5392 0.7343
No log 46.0 138 0.5365 0.2250 0.5365 0.7325
No log 46.6667 140 0.5390 0.0553 0.5390 0.7342
No log 47.3333 142 0.5755 0.1019 0.5755 0.7586
No log 48.0 144 0.5715 0.0982 0.5715 0.7560
No log 48.6667 146 0.5471 0.2640 0.5471 0.7397
No log 49.3333 148 0.5900 0.2985 0.5900 0.7681
No log 50.0 150 0.5944 0.3380 0.5944 0.7710
No log 50.6667 152 0.5782 0.3202 0.5782 0.7604
No log 51.3333 154 0.5748 0.3543 0.5748 0.7582
No log 52.0 156 0.6213 0.1585 0.6213 0.7882
No log 52.6667 158 0.5877 0.2748 0.5877 0.7666
No log 53.3333 160 0.5677 0.2423 0.5677 0.7535
No log 54.0 162 0.5553 0.2564 0.5553 0.7452
No log 54.6667 164 0.5583 0.1520 0.5583 0.7472
No log 55.3333 166 0.6110 0.0793 0.6110 0.7817
No log 56.0 168 0.6696 0.2138 0.6696 0.8183
No log 56.6667 170 0.6429 0.1148 0.6429 0.8018
No log 57.3333 172 0.5756 0.3696 0.5756 0.7587
No log 58.0 174 0.6037 0.3052 0.6037 0.7770
No log 58.6667 176 0.6507 0.2999 0.6507 0.8067
No log 59.3333 178 0.5970 0.3052 0.5970 0.7727
No log 60.0 180 0.5701 0.2956 0.5701 0.7550
No log 60.6667 182 0.5676 0.2524 0.5676 0.7534
No log 61.3333 184 0.5744 0.3092 0.5744 0.7579
No log 62.0 186 0.5831 0.3007 0.5831 0.7636
No log 62.6667 188 0.5900 0.2540 0.5900 0.7681
No log 63.3333 190 0.5928 0.3007 0.5928 0.7700
No log 64.0 192 0.5925 0.1570 0.5925 0.7697
No log 64.6667 194 0.5855 0.1061 0.5855 0.7652
No log 65.3333 196 0.5739 0.1101 0.5739 0.7575
No log 66.0 198 0.5610 0.1622 0.5610 0.7490
No log 66.6667 200 0.5536 0.1622 0.5536 0.7440
No log 67.3333 202 0.5490 0.1622 0.5490 0.7409
No log 68.0 204 0.5494 0.2564 0.5494 0.7412
No log 68.6667 206 0.5558 0.2821 0.5558 0.7455
No log 69.3333 208 0.5531 0.2220 0.5531 0.7437
No log 70.0 210 0.5397 0.3415 0.5397 0.7347
No log 70.6667 212 0.5334 0.3915 0.5334 0.7303
No log 71.3333 214 0.5390 0.3521 0.5390 0.7341
No log 72.0 216 0.5409 0.3521 0.5409 0.7355
No log 72.6667 218 0.5429 0.3521 0.5429 0.7368
No log 73.3333 220 0.5443 0.3521 0.5443 0.7378
No log 74.0 222 0.5499 0.2492 0.5499 0.7415
No log 74.6667 224 0.5622 0.2034 0.5622 0.7498
No log 75.3333 226 0.5809 0.2806 0.5809 0.7622
No log 76.0 228 0.5955 0.2205 0.5955 0.7717
No log 76.6667 230 0.5906 0.2205 0.5906 0.7685
No log 77.3333 232 0.5853 0.2806 0.5853 0.7651
No log 78.0 234 0.5749 0.2978 0.5749 0.7582
No log 78.6667 236 0.5635 0.2927 0.5635 0.7507
No log 79.3333 238 0.5759 0.2540 0.5759 0.7589
No log 80.0 240 0.6189 0.3052 0.6189 0.7867
No log 80.6667 242 0.6669 0.2450 0.6669 0.8166
No log 81.3333 244 0.6621 0.2450 0.6621 0.8137
No log 82.0 246 0.6159 0.3052 0.6159 0.7848
No log 82.6667 248 0.5722 0.2612 0.5722 0.7564
No log 83.3333 250 0.5602 0.2114 0.5602 0.7485
No log 84.0 252 0.5704 0.2034 0.5704 0.7552
No log 84.6667 254 0.5751 0.2034 0.5751 0.7583
No log 85.3333 256 0.5732 0.2034 0.5732 0.7571
No log 86.0 258 0.5750 0.2993 0.5750 0.7583
No log 86.6667 260 0.5745 0.3816 0.5745 0.7580
No log 87.3333 262 0.5710 0.3816 0.5710 0.7556
No log 88.0 264 0.5743 0.2956 0.5743 0.7578
No log 88.6667 266 0.5887 0.3052 0.5887 0.7673
No log 89.3333 268 0.5982 0.3052 0.5982 0.7734
No log 90.0 270 0.5983 0.3052 0.5983 0.7735
No log 90.6667 272 0.5956 0.3052 0.5956 0.7718
No log 91.3333 274 0.5864 0.3052 0.5864 0.7658
No log 92.0 276 0.5801 0.3052 0.5801 0.7617
No log 92.6667 278 0.5776 0.3052 0.5776 0.7600
No log 93.3333 280 0.5798 0.3052 0.5798 0.7614
No log 94.0 282 0.5814 0.3052 0.5814 0.7625
No log 94.6667 284 0.5811 0.2971 0.5811 0.7623
No log 95.3333 286 0.5799 0.3442 0.5799 0.7615
No log 96.0 288 0.5803 0.3442 0.5803 0.7618
No log 96.6667 290 0.5803 0.3442 0.5803 0.7618
No log 97.3333 292 0.5803 0.3828 0.5803 0.7618
No log 98.0 294 0.5800 0.3828 0.5800 0.7616
No log 98.6667 296 0.5799 0.3828 0.5799 0.7615
No log 99.3333 298 0.5797 0.3828 0.5797 0.7614
No log 100.0 300 0.5796 0.3828 0.5796 0.7613

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task3_organization

Finetuned
(4205)
this model