ArabicNewSplits8_FineTuningAraBERT_noAug_task6_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8340
  • Qwk: 0.5723
  • Mse: 0.8340
  • Rmse: 0.9132

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 3.4526 -0.0317 3.4526 1.8581
No log 1.3333 4 2.2343 0.0404 2.2343 1.4948
No log 2.0 6 1.2101 0.2208 1.2101 1.1001
No log 2.6667 8 0.9193 0.0 0.9193 0.9588
No log 3.3333 10 1.0335 0.0335 1.0335 1.0166
No log 4.0 12 0.8504 0.0218 0.8504 0.9222
No log 4.6667 14 0.7086 0.4351 0.7086 0.8418
No log 5.3333 16 0.7541 0.4673 0.7541 0.8684
No log 6.0 18 0.8298 0.1506 0.8298 0.9110
No log 6.6667 20 0.7384 0.3826 0.7384 0.8593
No log 7.3333 22 0.7834 0.3974 0.7834 0.8851
No log 8.0 24 0.8762 0.4259 0.8762 0.9361
No log 8.6667 26 1.0062 0.4243 1.0062 1.0031
No log 9.3333 28 1.1543 0.3660 1.1543 1.0744
No log 10.0 30 1.1532 0.3431 1.1532 1.0739
No log 10.6667 32 0.9774 0.4068 0.9774 0.9886
No log 11.3333 34 0.8913 0.3946 0.8913 0.9441
No log 12.0 36 0.9398 0.4270 0.9398 0.9694
No log 12.6667 38 0.9502 0.4216 0.9502 0.9748
No log 13.3333 40 0.8479 0.4825 0.8479 0.9208
No log 14.0 42 0.8696 0.4985 0.8696 0.9325
No log 14.6667 44 0.8998 0.4798 0.8998 0.9486
No log 15.3333 46 1.0532 0.4270 1.0532 1.0263
No log 16.0 48 1.2459 0.4253 1.2459 1.1162
No log 16.6667 50 1.1062 0.4235 1.1062 1.0518
No log 17.3333 52 0.9501 0.4368 0.9501 0.9747
No log 18.0 54 0.8000 0.5703 0.8000 0.8944
No log 18.6667 56 0.7786 0.5422 0.7786 0.8824
No log 19.3333 58 0.8515 0.6029 0.8515 0.9228
No log 20.0 60 1.0081 0.4269 1.0081 1.0040
No log 20.6667 62 1.0674 0.4284 1.0674 1.0331
No log 21.3333 64 1.0013 0.4189 1.0013 1.0006
No log 22.0 66 0.8419 0.5115 0.8419 0.9175
No log 22.6667 68 0.7435 0.6547 0.7435 0.8623
No log 23.3333 70 0.7719 0.6163 0.7719 0.8786
No log 24.0 72 0.7651 0.5351 0.7651 0.8747
No log 24.6667 74 0.9053 0.4363 0.9053 0.9515
No log 25.3333 76 1.0090 0.4974 1.0090 1.0045
No log 26.0 78 0.9488 0.5155 0.9488 0.9741
No log 26.6667 80 0.7880 0.5981 0.7880 0.8877
No log 27.3333 82 0.6494 0.6654 0.6494 0.8058
No log 28.0 84 0.6348 0.6444 0.6348 0.7967
No log 28.6667 86 0.6857 0.6173 0.6857 0.8281
No log 29.3333 88 0.8317 0.5460 0.8317 0.9120
No log 30.0 90 0.8303 0.5545 0.8303 0.9112
No log 30.6667 92 0.8252 0.5981 0.8252 0.9084
No log 31.3333 94 0.8322 0.5981 0.8322 0.9123
No log 32.0 96 0.9369 0.4573 0.9369 0.9680
No log 32.6667 98 0.8769 0.4764 0.8769 0.9364
No log 33.3333 100 0.6936 0.6296 0.6936 0.8328
No log 34.0 102 0.6399 0.6264 0.6399 0.8000
No log 34.6667 104 0.6302 0.6351 0.6302 0.7938
No log 35.3333 106 0.6795 0.6403 0.6795 0.8243
No log 36.0 108 0.8245 0.5534 0.8245 0.9080
No log 36.6667 110 0.9075 0.5082 0.9075 0.9526
No log 37.3333 112 0.8475 0.5747 0.8475 0.9206
No log 38.0 114 0.8374 0.5603 0.8374 0.9151
No log 38.6667 116 0.8240 0.5766 0.8240 0.9077
No log 39.3333 118 0.7487 0.5591 0.7487 0.8653
No log 40.0 120 0.7509 0.5641 0.7509 0.8666
No log 40.6667 122 0.7738 0.5610 0.7738 0.8797
No log 41.3333 124 0.8370 0.4535 0.8370 0.9149
No log 42.0 126 0.8331 0.4494 0.8331 0.9128
No log 42.6667 128 0.7992 0.5462 0.7992 0.8940
No log 43.3333 130 0.7800 0.5809 0.7800 0.8832
No log 44.0 132 0.8098 0.5543 0.8098 0.8999
No log 44.6667 134 0.8243 0.5371 0.8243 0.9079
No log 45.3333 136 0.7971 0.5388 0.7971 0.8928
No log 46.0 138 0.7945 0.5040 0.7945 0.8914
No log 46.6667 140 0.7726 0.4768 0.7726 0.8790
No log 47.3333 142 0.7802 0.5077 0.7802 0.8833
No log 48.0 144 0.8691 0.4032 0.8691 0.9323
No log 48.6667 146 0.8543 0.4858 0.8543 0.9243
No log 49.3333 148 0.7738 0.4584 0.7738 0.8797
No log 50.0 150 0.6812 0.4978 0.6812 0.8254
No log 50.6667 152 0.6483 0.5688 0.6483 0.8051
No log 51.3333 154 0.6532 0.5983 0.6532 0.8082
No log 52.0 156 0.6650 0.5983 0.6650 0.8154
No log 52.6667 158 0.7280 0.5670 0.7280 0.8532
No log 53.3333 160 0.7748 0.5678 0.7748 0.8802
No log 54.0 162 0.7402 0.5983 0.7402 0.8603
No log 54.6667 164 0.7146 0.5891 0.7146 0.8453
No log 55.3333 166 0.7148 0.5985 0.7148 0.8455
No log 56.0 168 0.7414 0.6164 0.7414 0.8610
No log 56.6667 170 0.7514 0.6071 0.7514 0.8669
No log 57.3333 172 0.7558 0.6071 0.7558 0.8694
No log 58.0 174 0.7710 0.5901 0.7710 0.8781
No log 58.6667 176 0.7183 0.6200 0.7183 0.8475
No log 59.3333 178 0.6501 0.6380 0.6501 0.8063
No log 60.0 180 0.6183 0.6236 0.6183 0.7863
No log 60.6667 182 0.6362 0.6181 0.6362 0.7976
No log 61.3333 184 0.7140 0.5981 0.7140 0.8450
No log 62.0 186 0.8421 0.5427 0.8421 0.9177
No log 62.6667 188 0.9839 0.4686 0.9839 0.9919
No log 63.3333 190 1.0033 0.4535 1.0033 1.0017
No log 64.0 192 0.9185 0.4976 0.9185 0.9584
No log 64.6667 194 0.8244 0.5571 0.8244 0.9080
No log 65.3333 196 0.7345 0.6078 0.7345 0.8571
No log 66.0 198 0.7035 0.5934 0.7035 0.8388
No log 66.6667 200 0.7409 0.5589 0.7409 0.8608
No log 67.3333 202 0.8480 0.5709 0.8480 0.9208
No log 68.0 204 0.9548 0.5001 0.9548 0.9771
No log 68.6667 206 1.0006 0.4646 1.0006 1.0003
No log 69.3333 208 1.0472 0.4482 1.0472 1.0233
No log 70.0 210 1.0085 0.4646 1.0085 1.0042
No log 70.6667 212 0.9211 0.5296 0.9211 0.9597
No log 71.3333 214 0.8564 0.5678 0.8564 0.9254
No log 72.0 216 0.8190 0.5764 0.8190 0.9050
No log 72.6667 218 0.8210 0.5678 0.8210 0.9061
No log 73.3333 220 0.8126 0.5764 0.8126 0.9014
No log 74.0 222 0.8188 0.5764 0.8188 0.9049
No log 74.6667 224 0.8274 0.5497 0.8274 0.9096
No log 75.3333 226 0.8370 0.5497 0.8370 0.9149
No log 76.0 228 0.8657 0.5001 0.8657 0.9304
No log 76.6667 230 0.8825 0.5001 0.8825 0.9394
No log 77.3333 232 0.8894 0.5244 0.8894 0.9431
No log 78.0 234 0.8879 0.5244 0.8879 0.9423
No log 78.6667 236 0.8604 0.5427 0.8604 0.9276
No log 79.3333 238 0.8326 0.5497 0.8326 0.9124
No log 80.0 240 0.7870 0.5678 0.7870 0.8872
No log 80.6667 242 0.7509 0.5764 0.7509 0.8665
No log 81.3333 244 0.7092 0.5935 0.7092 0.8421
No log 82.0 246 0.6965 0.6074 0.6965 0.8346
No log 82.6667 248 0.6998 0.5935 0.6998 0.8366
No log 83.3333 250 0.7183 0.5935 0.7183 0.8475
No log 84.0 252 0.7599 0.5981 0.7599 0.8717
No log 84.6667 254 0.8164 0.5678 0.8164 0.9036
No log 85.3333 256 0.8851 0.5678 0.8851 0.9408
No log 86.0 258 0.9300 0.5427 0.9300 0.9644
No log 86.6667 260 0.9437 0.5234 0.9437 0.9714
No log 87.3333 262 0.9368 0.5234 0.9368 0.9679
No log 88.0 264 0.9105 0.5427 0.9105 0.9542
No log 88.6667 266 0.8754 0.5427 0.8754 0.9356
No log 89.3333 268 0.8341 0.5497 0.8341 0.9133
No log 90.0 270 0.7874 0.5678 0.7874 0.8874
No log 90.6667 272 0.7526 0.5892 0.7526 0.8675
No log 91.3333 274 0.7188 0.5758 0.7188 0.8478
No log 92.0 276 0.7026 0.5894 0.7026 0.8382
No log 92.6667 278 0.7010 0.5937 0.7010 0.8372
No log 93.3333 280 0.7121 0.5847 0.7121 0.8439
No log 94.0 282 0.7318 0.5892 0.7318 0.8555
No log 94.6667 284 0.7518 0.5709 0.7518 0.8671
No log 95.3333 286 0.7656 0.5709 0.7656 0.8750
No log 96.0 288 0.7820 0.5497 0.7820 0.8843
No log 96.6667 290 0.7991 0.5497 0.7991 0.8939
No log 97.3333 292 0.8130 0.5497 0.8130 0.9017
No log 98.0 294 0.8224 0.5497 0.8224 0.9069
No log 98.6667 296 0.8284 0.5723 0.8284 0.9101
No log 99.3333 298 0.8328 0.5723 0.8328 0.9126
No log 100.0 300 0.8340 0.5723 0.8340 0.9132

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task6_organization

Finetuned
(4205)
this model