ArabicNewSplits8_FineTuningAraBERT_noAug_task7_organization

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6075
  • Qwk: 0.5101
  • Mse: 0.6075
  • Rmse: 0.7794

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 0.6667 2 2.1474 0.0339 2.1474 1.4654
No log 1.3333 4 1.3213 0.0723 1.3213 1.1495
No log 2.0 6 0.6446 0.1622 0.6446 0.8028
No log 2.6667 8 0.8130 0.2940 0.8130 0.9017
No log 3.3333 10 1.0316 0.2027 1.0316 1.0157
No log 4.0 12 0.8163 0.3321 0.8163 0.9035
No log 4.6667 14 0.5551 0.5315 0.5551 0.7451
No log 5.3333 16 0.5100 0.5123 0.5100 0.7141
No log 6.0 18 0.5523 0.5025 0.5523 0.7432
No log 6.6667 20 0.5506 0.4589 0.5506 0.7420
No log 7.3333 22 0.5711 0.4759 0.5711 0.7557
No log 8.0 24 0.5892 0.4492 0.5892 0.7676
No log 8.6667 26 0.5732 0.4292 0.5732 0.7571
No log 9.3333 28 0.6004 0.4185 0.6004 0.7749
No log 10.0 30 0.6516 0.3661 0.6516 0.8072
No log 10.6667 32 0.6818 0.3765 0.6818 0.8257
No log 11.3333 34 0.6758 0.3988 0.6758 0.8221
No log 12.0 36 0.6504 0.3905 0.6504 0.8065
No log 12.6667 38 0.5567 0.4414 0.5567 0.7462
No log 13.3333 40 0.5557 0.4669 0.5557 0.7454
No log 14.0 42 0.5239 0.5430 0.5239 0.7238
No log 14.6667 44 0.7165 0.4218 0.7165 0.8465
No log 15.3333 46 0.6867 0.4343 0.6867 0.8287
No log 16.0 48 0.5641 0.4725 0.5641 0.7511
No log 16.6667 50 0.5551 0.5205 0.5551 0.7450
No log 17.3333 52 0.5751 0.5035 0.5751 0.7583
No log 18.0 54 0.6803 0.4549 0.6803 0.8248
No log 18.6667 56 0.6782 0.5051 0.6782 0.8235
No log 19.3333 58 0.5668 0.4929 0.5668 0.7528
No log 20.0 60 0.5338 0.4315 0.5338 0.7306
No log 20.6667 62 0.5276 0.4640 0.5276 0.7264
No log 21.3333 64 0.5527 0.4722 0.5527 0.7435
No log 22.0 66 0.6596 0.5376 0.6596 0.8122
No log 22.6667 68 0.7277 0.4822 0.7277 0.8531
No log 23.3333 70 0.5849 0.5272 0.5849 0.7648
No log 24.0 72 0.5113 0.5053 0.5113 0.7151
No log 24.6667 74 0.5041 0.5223 0.5041 0.7100
No log 25.3333 76 0.5902 0.4664 0.5902 0.7682
No log 26.0 78 0.7216 0.5015 0.7216 0.8495
No log 26.6667 80 0.8025 0.4086 0.8025 0.8958
No log 27.3333 82 0.7171 0.4218 0.7171 0.8468
No log 28.0 84 0.5938 0.5055 0.5938 0.7706
No log 28.6667 86 0.5747 0.4748 0.5747 0.7581
No log 29.3333 88 0.6186 0.4123 0.6186 0.7865
No log 30.0 90 0.7446 0.4676 0.7446 0.8629
No log 30.6667 92 0.8161 0.4241 0.8161 0.9034
No log 31.3333 94 0.8996 0.3973 0.8996 0.9485
No log 32.0 96 0.7428 0.4369 0.7428 0.8619
No log 32.6667 98 0.6311 0.4400 0.6311 0.7944
No log 33.3333 100 0.6400 0.4848 0.6400 0.8000
No log 34.0 102 0.7560 0.3974 0.7560 0.8695
No log 34.6667 104 0.9413 0.3497 0.9413 0.9702
No log 35.3333 106 0.9029 0.4086 0.9029 0.9502
No log 36.0 108 0.7306 0.4360 0.7306 0.8548
No log 36.6667 110 0.6129 0.4282 0.6129 0.7829
No log 37.3333 112 0.6088 0.4249 0.6088 0.7803
No log 38.0 114 0.7047 0.4360 0.7047 0.8394
No log 38.6667 116 0.8933 0.3611 0.8933 0.9451
No log 39.3333 118 0.9288 0.3568 0.9288 0.9638
No log 40.0 120 0.8323 0.3761 0.8323 0.9123
No log 40.6667 122 0.6955 0.4009 0.6955 0.8340
No log 41.3333 124 0.6258 0.4705 0.6258 0.7911
No log 42.0 126 0.5640 0.4905 0.5640 0.7510
No log 42.6667 128 0.5791 0.4281 0.5791 0.7610
No log 43.3333 130 0.6355 0.4606 0.6355 0.7972
No log 44.0 132 0.7685 0.4066 0.7685 0.8766
No log 44.6667 134 0.9025 0.2998 0.9025 0.9500
No log 45.3333 136 0.9050 0.2861 0.9050 0.9513
No log 46.0 138 0.8015 0.3321 0.8015 0.8953
No log 46.6667 140 0.7314 0.3671 0.7314 0.8552
No log 47.3333 142 0.7086 0.4331 0.7086 0.8418
No log 48.0 144 0.6768 0.4747 0.6768 0.8227
No log 48.6667 146 0.6122 0.4409 0.6122 0.7824
No log 49.3333 148 0.5908 0.4241 0.5908 0.7686
No log 50.0 150 0.6497 0.4589 0.6497 0.8060
No log 50.6667 152 0.7459 0.3980 0.7459 0.8636
No log 51.3333 154 0.8399 0.3844 0.8399 0.9165
No log 52.0 156 0.9210 0.3730 0.9210 0.9597
No log 52.6667 158 0.8614 0.4118 0.8614 0.9281
No log 53.3333 160 0.7090 0.4469 0.7090 0.8420
No log 54.0 162 0.6224 0.4262 0.6224 0.7889
No log 54.6667 164 0.5817 0.4749 0.5817 0.7627
No log 55.3333 166 0.5629 0.4963 0.5629 0.7503
No log 56.0 168 0.5647 0.5250 0.5647 0.7515
No log 56.6667 170 0.5722 0.5196 0.5722 0.7564
No log 57.3333 172 0.6110 0.4436 0.6110 0.7816
No log 58.0 174 0.6854 0.4598 0.6854 0.8279
No log 58.6667 176 0.7666 0.3496 0.7666 0.8756
No log 59.3333 178 0.8282 0.3293 0.8282 0.9100
No log 60.0 180 0.8424 0.3426 0.8424 0.9178
No log 60.6667 182 0.8670 0.3426 0.8670 0.9311
No log 61.3333 184 0.8375 0.3426 0.8375 0.9152
No log 62.0 186 0.7924 0.3415 0.7924 0.8902
No log 62.6667 188 0.7521 0.3935 0.7521 0.8673
No log 63.3333 190 0.7321 0.3980 0.7321 0.8556
No log 64.0 192 0.6943 0.4598 0.6943 0.8333
No log 64.6667 194 0.6372 0.4705 0.6372 0.7982
No log 65.3333 196 0.5764 0.4072 0.5764 0.7592
No log 66.0 198 0.5649 0.4623 0.5649 0.7516
No log 66.6667 200 0.5604 0.4799 0.5604 0.7486
No log 67.3333 202 0.5796 0.4260 0.5796 0.7613
No log 68.0 204 0.6050 0.4357 0.6050 0.7778
No log 68.6667 206 0.6350 0.4367 0.6350 0.7969
No log 69.3333 208 0.6583 0.4367 0.6583 0.8113
No log 70.0 210 0.6856 0.4520 0.6856 0.8280
No log 70.6667 212 0.7125 0.4198 0.7125 0.8441
No log 71.3333 214 0.7093 0.4363 0.7093 0.8422
No log 72.0 216 0.6728 0.4198 0.6728 0.8202
No log 72.6667 218 0.6735 0.4198 0.6735 0.8206
No log 73.3333 220 0.6626 0.4367 0.6626 0.8140
No log 74.0 222 0.6762 0.4198 0.6762 0.8223
No log 74.6667 224 0.6924 0.4198 0.6924 0.8321
No log 75.3333 226 0.6963 0.4198 0.6963 0.8344
No log 76.0 228 0.6720 0.4198 0.6720 0.8198
No log 76.6667 230 0.6603 0.4367 0.6603 0.8126
No log 77.3333 232 0.6394 0.4533 0.6394 0.7996
No log 78.0 234 0.6330 0.4533 0.6330 0.7956
No log 78.6667 236 0.6186 0.4533 0.6186 0.7865
No log 79.3333 238 0.6221 0.4479 0.6221 0.7887
No log 80.0 240 0.6380 0.4222 0.6380 0.7988
No log 80.6667 242 0.6631 0.4896 0.6631 0.8143
No log 81.3333 244 0.6821 0.4896 0.6821 0.8259
No log 82.0 246 0.6991 0.4896 0.6991 0.8361
No log 82.6667 248 0.7052 0.4896 0.7052 0.8398
No log 83.3333 250 0.6773 0.4896 0.6773 0.8230
No log 84.0 252 0.6617 0.4748 0.6617 0.8134
No log 84.6667 254 0.6431 0.4687 0.6431 0.8019
No log 85.3333 256 0.6186 0.4543 0.6186 0.7865
No log 86.0 258 0.5900 0.4688 0.5900 0.7681
No log 86.6667 260 0.5775 0.4629 0.5775 0.7599
No log 87.3333 262 0.5773 0.4678 0.5773 0.7598
No log 88.0 264 0.5884 0.4688 0.5884 0.7671
No log 88.6667 266 0.5977 0.5043 0.5977 0.7731
No log 89.3333 268 0.6007 0.5101 0.6007 0.7751
No log 90.0 270 0.6084 0.4836 0.6084 0.7800
No log 90.6667 272 0.6202 0.4415 0.6202 0.7875
No log 91.3333 274 0.6380 0.4369 0.6380 0.7987
No log 92.0 276 0.6614 0.4748 0.6614 0.8133
No log 92.6667 278 0.6784 0.4896 0.6784 0.8237
No log 93.3333 280 0.6848 0.4896 0.6848 0.8275
No log 94.0 282 0.6794 0.4896 0.6794 0.8243
No log 94.6667 284 0.6719 0.4896 0.6719 0.8197
No log 95.3333 286 0.6606 0.4748 0.6606 0.8128
No log 96.0 288 0.6476 0.4687 0.6476 0.8047
No log 96.6667 290 0.6362 0.4687 0.6362 0.7976
No log 97.3333 292 0.6252 0.4333 0.6252 0.7907
No log 98.0 294 0.6183 0.4586 0.6183 0.7863
No log 98.6667 296 0.6130 0.4845 0.6130 0.7829
No log 99.3333 298 0.6089 0.4676 0.6089 0.7803
No log 100.0 300 0.6075 0.5101 0.6075 0.7794

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MayBashendy/ArabicNewSplits8_FineTuningAraBERT_noAug_task7_organization

Finetuned
(4205)
this model