ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k16_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6355
- Qwk: 0.4630
- Mse: 0.6355
- Rmse: 0.7972
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.0244 | 2 | 4.2891 | -0.0278 | 4.2891 | 2.0710 |
No log | 0.0488 | 4 | 2.4178 | 0.0485 | 2.4178 | 1.5549 |
No log | 0.0732 | 6 | 1.6163 | 0.1380 | 1.6163 | 1.2713 |
No log | 0.0976 | 8 | 1.2491 | 0.0 | 1.2491 | 1.1176 |
No log | 0.1220 | 10 | 1.0555 | -0.0277 | 1.0555 | 1.0274 |
No log | 0.1463 | 12 | 1.1194 | -0.0217 | 1.1194 | 1.0580 |
No log | 0.1707 | 14 | 1.1328 | 0.0096 | 1.1328 | 1.0643 |
No log | 0.1951 | 16 | 0.9558 | 0.1757 | 0.9558 | 0.9776 |
No log | 0.2195 | 18 | 0.7827 | 0.2827 | 0.7827 | 0.8847 |
No log | 0.2439 | 20 | 0.7885 | 0.2224 | 0.7885 | 0.8880 |
No log | 0.2683 | 22 | 0.7527 | 0.2916 | 0.7527 | 0.8676 |
No log | 0.2927 | 24 | 0.7845 | 0.3109 | 0.7845 | 0.8857 |
No log | 0.3171 | 26 | 0.7657 | 0.2789 | 0.7657 | 0.8751 |
No log | 0.3415 | 28 | 0.8547 | 0.2677 | 0.8547 | 0.9245 |
No log | 0.3659 | 30 | 1.0690 | 0.1126 | 1.0690 | 1.0339 |
No log | 0.3902 | 32 | 1.0529 | 0.1573 | 1.0529 | 1.0261 |
No log | 0.4146 | 34 | 1.0367 | 0.1126 | 1.0367 | 1.0182 |
No log | 0.4390 | 36 | 1.0027 | 0.1349 | 1.0027 | 1.0014 |
No log | 0.4634 | 38 | 0.8560 | 0.1867 | 0.8560 | 0.9252 |
No log | 0.4878 | 40 | 0.7627 | 0.3492 | 0.7627 | 0.8733 |
No log | 0.5122 | 42 | 0.7339 | 0.3668 | 0.7339 | 0.8567 |
No log | 0.5366 | 44 | 0.8312 | 0.2815 | 0.8312 | 0.9117 |
No log | 0.5610 | 46 | 0.7744 | 0.3466 | 0.7744 | 0.8800 |
No log | 0.5854 | 48 | 0.7520 | 0.3533 | 0.7520 | 0.8672 |
No log | 0.6098 | 50 | 0.7082 | 0.4503 | 0.7082 | 0.8416 |
No log | 0.6341 | 52 | 0.6928 | 0.4356 | 0.6928 | 0.8324 |
No log | 0.6585 | 54 | 0.6826 | 0.4565 | 0.6826 | 0.8262 |
No log | 0.6829 | 56 | 0.7430 | 0.3674 | 0.7430 | 0.8620 |
No log | 0.7073 | 58 | 0.7929 | 0.3855 | 0.7929 | 0.8904 |
No log | 0.7317 | 60 | 0.8398 | 0.3436 | 0.8398 | 0.9164 |
No log | 0.7561 | 62 | 0.6606 | 0.3933 | 0.6606 | 0.8128 |
No log | 0.7805 | 64 | 0.6449 | 0.4361 | 0.6449 | 0.8030 |
No log | 0.8049 | 66 | 0.6917 | 0.4048 | 0.6917 | 0.8317 |
No log | 0.8293 | 68 | 0.6864 | 0.4149 | 0.6864 | 0.8285 |
No log | 0.8537 | 70 | 0.7659 | 0.3358 | 0.7659 | 0.8752 |
No log | 0.8780 | 72 | 0.9122 | 0.2697 | 0.9122 | 0.9551 |
No log | 0.9024 | 74 | 0.9456 | 0.2652 | 0.9456 | 0.9724 |
No log | 0.9268 | 76 | 0.9706 | 0.2271 | 0.9706 | 0.9852 |
No log | 0.9512 | 78 | 0.9100 | 0.2608 | 0.9100 | 0.9540 |
No log | 0.9756 | 80 | 0.8710 | 0.2731 | 0.8710 | 0.9333 |
No log | 1.0 | 82 | 0.7439 | 0.2899 | 0.7439 | 0.8625 |
No log | 1.0244 | 84 | 0.7300 | 0.2919 | 0.7300 | 0.8544 |
No log | 1.0488 | 86 | 0.7957 | 0.2751 | 0.7957 | 0.8920 |
No log | 1.0732 | 88 | 0.7952 | 0.2855 | 0.7952 | 0.8917 |
No log | 1.0976 | 90 | 0.7811 | 0.3928 | 0.7811 | 0.8838 |
No log | 1.1220 | 92 | 0.7151 | 0.4413 | 0.7151 | 0.8457 |
No log | 1.1463 | 94 | 0.6376 | 0.4504 | 0.6376 | 0.7985 |
No log | 1.1707 | 96 | 0.6227 | 0.4455 | 0.6227 | 0.7891 |
No log | 1.1951 | 98 | 0.6164 | 0.4557 | 0.6164 | 0.7851 |
No log | 1.2195 | 100 | 0.6774 | 0.4108 | 0.6774 | 0.8230 |
No log | 1.2439 | 102 | 0.7166 | 0.4518 | 0.7166 | 0.8465 |
No log | 1.2683 | 104 | 0.6953 | 0.4801 | 0.6953 | 0.8338 |
No log | 1.2927 | 106 | 0.7128 | 0.4237 | 0.7128 | 0.8443 |
No log | 1.3171 | 108 | 0.6948 | 0.4530 | 0.6948 | 0.8335 |
No log | 1.3415 | 110 | 0.6463 | 0.4405 | 0.6463 | 0.8039 |
No log | 1.3659 | 112 | 0.6511 | 0.4467 | 0.6511 | 0.8069 |
No log | 1.3902 | 114 | 0.7105 | 0.3447 | 0.7105 | 0.8429 |
No log | 1.4146 | 116 | 0.9347 | 0.2550 | 0.9347 | 0.9668 |
No log | 1.4390 | 118 | 1.0681 | 0.2198 | 1.0681 | 1.0335 |
No log | 1.4634 | 120 | 1.2026 | 0.2374 | 1.2026 | 1.0966 |
No log | 1.4878 | 122 | 1.1988 | 0.3076 | 1.1988 | 1.0949 |
No log | 1.5122 | 124 | 0.8733 | 0.3980 | 0.8733 | 0.9345 |
No log | 1.5366 | 126 | 0.6155 | 0.4579 | 0.6155 | 0.7846 |
No log | 1.5610 | 128 | 0.6120 | 0.5160 | 0.6120 | 0.7823 |
No log | 1.5854 | 130 | 0.6054 | 0.5483 | 0.6054 | 0.7781 |
No log | 1.6098 | 132 | 0.6440 | 0.4715 | 0.6440 | 0.8025 |
No log | 1.6341 | 134 | 0.6991 | 0.4350 | 0.6991 | 0.8361 |
No log | 1.6585 | 136 | 0.7456 | 0.4341 | 0.7456 | 0.8635 |
No log | 1.6829 | 138 | 0.6983 | 0.4015 | 0.6983 | 0.8357 |
No log | 1.7073 | 140 | 0.6334 | 0.4064 | 0.6334 | 0.7959 |
No log | 1.7317 | 142 | 0.6098 | 0.4367 | 0.6098 | 0.7809 |
No log | 1.7561 | 144 | 0.6048 | 0.4655 | 0.6048 | 0.7777 |
No log | 1.7805 | 146 | 0.6616 | 0.4543 | 0.6616 | 0.8134 |
No log | 1.8049 | 148 | 0.6386 | 0.4781 | 0.6386 | 0.7992 |
No log | 1.8293 | 150 | 0.6384 | 0.4625 | 0.6384 | 0.7990 |
No log | 1.8537 | 152 | 0.6503 | 0.4081 | 0.6503 | 0.8064 |
No log | 1.8780 | 154 | 0.7034 | 0.3099 | 0.7034 | 0.8387 |
No log | 1.9024 | 156 | 0.7072 | 0.2915 | 0.7072 | 0.8410 |
No log | 1.9268 | 158 | 0.6997 | 0.2977 | 0.6997 | 0.8365 |
No log | 1.9512 | 160 | 0.7111 | 0.3641 | 0.7111 | 0.8433 |
No log | 1.9756 | 162 | 0.6416 | 0.4281 | 0.6416 | 0.8010 |
No log | 2.0 | 164 | 0.6093 | 0.4781 | 0.6093 | 0.7806 |
No log | 2.0244 | 166 | 0.7899 | 0.3966 | 0.7899 | 0.8888 |
No log | 2.0488 | 168 | 0.8033 | 0.3592 | 0.8033 | 0.8963 |
No log | 2.0732 | 170 | 0.6670 | 0.4779 | 0.6670 | 0.8167 |
No log | 2.0976 | 172 | 0.6509 | 0.5243 | 0.6509 | 0.8068 |
No log | 2.1220 | 174 | 0.6411 | 0.4976 | 0.6411 | 0.8007 |
No log | 2.1463 | 176 | 0.6421 | 0.4901 | 0.6421 | 0.8013 |
No log | 2.1707 | 178 | 0.6445 | 0.4901 | 0.6445 | 0.8028 |
No log | 2.1951 | 180 | 0.7585 | 0.3939 | 0.7585 | 0.8709 |
No log | 2.2195 | 182 | 1.0039 | 0.3715 | 1.0039 | 1.0020 |
No log | 2.2439 | 184 | 1.0033 | 0.3743 | 1.0033 | 1.0016 |
No log | 2.2683 | 186 | 0.7738 | 0.3883 | 0.7738 | 0.8797 |
No log | 2.2927 | 188 | 0.6187 | 0.4717 | 0.6187 | 0.7866 |
No log | 2.3171 | 190 | 0.5917 | 0.4990 | 0.5917 | 0.7692 |
No log | 2.3415 | 192 | 0.5906 | 0.4497 | 0.5906 | 0.7685 |
No log | 2.3659 | 194 | 0.5977 | 0.4354 | 0.5977 | 0.7731 |
No log | 2.3902 | 196 | 0.6488 | 0.4670 | 0.6488 | 0.8055 |
No log | 2.4146 | 198 | 0.7765 | 0.3737 | 0.7765 | 0.8812 |
No log | 2.4390 | 200 | 0.7796 | 0.3684 | 0.7796 | 0.8830 |
No log | 2.4634 | 202 | 0.6524 | 0.4864 | 0.6524 | 0.8077 |
No log | 2.4878 | 204 | 0.5982 | 0.5292 | 0.5982 | 0.7734 |
No log | 2.5122 | 206 | 0.5960 | 0.5005 | 0.5960 | 0.7720 |
No log | 2.5366 | 208 | 0.6214 | 0.4861 | 0.6214 | 0.7883 |
No log | 2.5610 | 210 | 0.6057 | 0.4734 | 0.6057 | 0.7782 |
No log | 2.5854 | 212 | 0.5894 | 0.4820 | 0.5894 | 0.7677 |
No log | 2.6098 | 214 | 0.5884 | 0.4734 | 0.5884 | 0.7671 |
No log | 2.6341 | 216 | 0.6556 | 0.4511 | 0.6556 | 0.8097 |
No log | 2.6585 | 218 | 0.8168 | 0.3718 | 0.8168 | 0.9038 |
No log | 2.6829 | 220 | 0.8170 | 0.3752 | 0.8170 | 0.9039 |
No log | 2.7073 | 222 | 0.7066 | 0.4458 | 0.7066 | 0.8406 |
No log | 2.7317 | 224 | 0.6042 | 0.4216 | 0.6042 | 0.7773 |
No log | 2.7561 | 226 | 0.6184 | 0.4416 | 0.6184 | 0.7864 |
No log | 2.7805 | 228 | 0.6081 | 0.3934 | 0.6081 | 0.7798 |
No log | 2.8049 | 230 | 0.6527 | 0.4638 | 0.6527 | 0.8079 |
No log | 2.8293 | 232 | 0.7365 | 0.4229 | 0.7365 | 0.8582 |
No log | 2.8537 | 234 | 0.6997 | 0.4918 | 0.6997 | 0.8365 |
No log | 2.8780 | 236 | 0.6245 | 0.4471 | 0.6245 | 0.7903 |
No log | 2.9024 | 238 | 0.5873 | 0.4662 | 0.5873 | 0.7663 |
No log | 2.9268 | 240 | 0.5804 | 0.4489 | 0.5804 | 0.7619 |
No log | 2.9512 | 242 | 0.6230 | 0.4471 | 0.6230 | 0.7893 |
No log | 2.9756 | 244 | 0.7779 | 0.4219 | 0.7779 | 0.8820 |
No log | 3.0 | 246 | 0.8040 | 0.3951 | 0.8040 | 0.8967 |
No log | 3.0244 | 248 | 0.7421 | 0.4254 | 0.7421 | 0.8615 |
No log | 3.0488 | 250 | 0.6824 | 0.4656 | 0.6824 | 0.8261 |
No log | 3.0732 | 252 | 0.6849 | 0.4603 | 0.6849 | 0.8276 |
No log | 3.0976 | 254 | 0.7294 | 0.3841 | 0.7294 | 0.8540 |
No log | 3.1220 | 256 | 0.7714 | 0.3883 | 0.7714 | 0.8783 |
No log | 3.1463 | 258 | 0.7889 | 0.3457 | 0.7889 | 0.8882 |
No log | 3.1707 | 260 | 0.7395 | 0.3748 | 0.7395 | 0.8599 |
No log | 3.1951 | 262 | 0.6820 | 0.4339 | 0.6820 | 0.8258 |
No log | 3.2195 | 264 | 0.6433 | 0.4705 | 0.6433 | 0.8021 |
No log | 3.2439 | 266 | 0.6159 | 0.4774 | 0.6159 | 0.7848 |
No log | 3.2683 | 268 | 0.6078 | 0.4708 | 0.6078 | 0.7796 |
No log | 3.2927 | 270 | 0.6218 | 0.3903 | 0.6218 | 0.7886 |
No log | 3.3171 | 272 | 0.6349 | 0.4398 | 0.6349 | 0.7968 |
No log | 3.3415 | 274 | 0.6103 | 0.3999 | 0.6103 | 0.7812 |
No log | 3.3659 | 276 | 0.5761 | 0.4847 | 0.5761 | 0.7590 |
No log | 3.3902 | 278 | 0.5732 | 0.4918 | 0.5732 | 0.7571 |
No log | 3.4146 | 280 | 0.6102 | 0.4268 | 0.6102 | 0.7812 |
No log | 3.4390 | 282 | 0.7138 | 0.4429 | 0.7138 | 0.8448 |
No log | 3.4634 | 284 | 0.7163 | 0.4481 | 0.7163 | 0.8463 |
No log | 3.4878 | 286 | 0.6225 | 0.4684 | 0.6225 | 0.7890 |
No log | 3.5122 | 288 | 0.5904 | 0.4533 | 0.5904 | 0.7684 |
No log | 3.5366 | 290 | 0.5978 | 0.4462 | 0.5978 | 0.7732 |
No log | 3.5610 | 292 | 0.6706 | 0.4628 | 0.6706 | 0.8189 |
No log | 3.5854 | 294 | 0.8294 | 0.3787 | 0.8294 | 0.9107 |
No log | 3.6098 | 296 | 0.7835 | 0.3900 | 0.7835 | 0.8852 |
No log | 3.6341 | 298 | 0.6300 | 0.4746 | 0.6300 | 0.7937 |
No log | 3.6585 | 300 | 0.5818 | 0.4361 | 0.5818 | 0.7627 |
No log | 3.6829 | 302 | 0.6125 | 0.4128 | 0.6125 | 0.7826 |
No log | 3.7073 | 304 | 0.6000 | 0.3990 | 0.6000 | 0.7746 |
No log | 3.7317 | 306 | 0.5779 | 0.4342 | 0.5779 | 0.7602 |
No log | 3.7561 | 308 | 0.6480 | 0.4223 | 0.6480 | 0.8050 |
No log | 3.7805 | 310 | 0.7365 | 0.3380 | 0.7365 | 0.8582 |
No log | 3.8049 | 312 | 0.7089 | 0.3431 | 0.7089 | 0.8420 |
No log | 3.8293 | 314 | 0.6602 | 0.4807 | 0.6602 | 0.8125 |
No log | 3.8537 | 316 | 0.6477 | 0.4889 | 0.6477 | 0.8048 |
No log | 3.8780 | 318 | 0.6040 | 0.4871 | 0.6040 | 0.7772 |
No log | 3.9024 | 320 | 0.6290 | 0.5034 | 0.6290 | 0.7931 |
No log | 3.9268 | 322 | 0.6122 | 0.4864 | 0.6122 | 0.7824 |
No log | 3.9512 | 324 | 0.5900 | 0.5042 | 0.5900 | 0.7681 |
No log | 3.9756 | 326 | 0.5955 | 0.5207 | 0.5955 | 0.7717 |
No log | 4.0 | 328 | 0.6221 | 0.5003 | 0.6221 | 0.7887 |
No log | 4.0244 | 330 | 0.7006 | 0.4459 | 0.7006 | 0.8370 |
No log | 4.0488 | 332 | 0.8433 | 0.3560 | 0.8433 | 0.9183 |
No log | 4.0732 | 334 | 0.8576 | 0.3355 | 0.8576 | 0.9260 |
No log | 4.0976 | 336 | 0.7134 | 0.4825 | 0.7134 | 0.8446 |
No log | 4.1220 | 338 | 0.5886 | 0.4990 | 0.5886 | 0.7672 |
No log | 4.1463 | 340 | 0.6067 | 0.4547 | 0.6067 | 0.7789 |
No log | 4.1707 | 342 | 0.6009 | 0.4515 | 0.6009 | 0.7752 |
No log | 4.1951 | 344 | 0.5528 | 0.5380 | 0.5528 | 0.7435 |
No log | 4.2195 | 346 | 0.6065 | 0.4723 | 0.6065 | 0.7788 |
No log | 4.2439 | 348 | 0.7834 | 0.4143 | 0.7834 | 0.8851 |
No log | 4.2683 | 350 | 0.8769 | 0.3664 | 0.8769 | 0.9364 |
No log | 4.2927 | 352 | 0.7832 | 0.4452 | 0.7832 | 0.8850 |
No log | 4.3171 | 354 | 0.6435 | 0.4424 | 0.6435 | 0.8022 |
No log | 4.3415 | 356 | 0.5710 | 0.5228 | 0.5710 | 0.7556 |
No log | 4.3659 | 358 | 0.5632 | 0.5420 | 0.5632 | 0.7505 |
No log | 4.3902 | 360 | 0.6009 | 0.4807 | 0.6009 | 0.7752 |
No log | 4.4146 | 362 | 0.6058 | 0.4626 | 0.6058 | 0.7784 |
No log | 4.4390 | 364 | 0.5844 | 0.4770 | 0.5844 | 0.7645 |
No log | 4.4634 | 366 | 0.6066 | 0.4543 | 0.6066 | 0.7789 |
No log | 4.4878 | 368 | 0.6447 | 0.4380 | 0.6447 | 0.8029 |
No log | 4.5122 | 370 | 0.6028 | 0.4861 | 0.6028 | 0.7764 |
No log | 4.5366 | 372 | 0.5696 | 0.4609 | 0.5696 | 0.7547 |
No log | 4.5610 | 374 | 0.5750 | 0.5099 | 0.5750 | 0.7583 |
No log | 4.5854 | 376 | 0.5655 | 0.4984 | 0.5655 | 0.7520 |
No log | 4.6098 | 378 | 0.5776 | 0.4543 | 0.5776 | 0.7600 |
No log | 4.6341 | 380 | 0.6444 | 0.4534 | 0.6444 | 0.8028 |
No log | 4.6585 | 382 | 0.6476 | 0.4587 | 0.6476 | 0.8047 |
No log | 4.6829 | 384 | 0.6106 | 0.4558 | 0.6106 | 0.7814 |
No log | 4.7073 | 386 | 0.5821 | 0.4969 | 0.5821 | 0.7630 |
No log | 4.7317 | 388 | 0.5842 | 0.5363 | 0.5842 | 0.7643 |
No log | 4.7561 | 390 | 0.6061 | 0.5080 | 0.6061 | 0.7785 |
No log | 4.7805 | 392 | 0.6836 | 0.4399 | 0.6836 | 0.8268 |
No log | 4.8049 | 394 | 0.8361 | 0.4216 | 0.8361 | 0.9144 |
No log | 4.8293 | 396 | 0.8495 | 0.3927 | 0.8495 | 0.9217 |
No log | 4.8537 | 398 | 0.7000 | 0.4422 | 0.7000 | 0.8367 |
No log | 4.8780 | 400 | 0.6212 | 0.5142 | 0.6212 | 0.7882 |
No log | 4.9024 | 402 | 0.6019 | 0.4862 | 0.6019 | 0.7758 |
No log | 4.9268 | 404 | 0.6044 | 0.4308 | 0.6044 | 0.7774 |
No log | 4.9512 | 406 | 0.6051 | 0.4139 | 0.6051 | 0.7779 |
No log | 4.9756 | 408 | 0.6071 | 0.4444 | 0.6071 | 0.7792 |
No log | 5.0 | 410 | 0.6618 | 0.4386 | 0.6618 | 0.8135 |
No log | 5.0244 | 412 | 0.6976 | 0.4144 | 0.6976 | 0.8352 |
No log | 5.0488 | 414 | 0.7142 | 0.4173 | 0.7142 | 0.8451 |
No log | 5.0732 | 416 | 0.6676 | 0.4697 | 0.6676 | 0.8171 |
No log | 5.0976 | 418 | 0.5913 | 0.4661 | 0.5913 | 0.7690 |
No log | 5.1220 | 420 | 0.5509 | 0.5375 | 0.5509 | 0.7423 |
No log | 5.1463 | 422 | 0.5505 | 0.4937 | 0.5505 | 0.7419 |
No log | 5.1707 | 424 | 0.5578 | 0.4837 | 0.5578 | 0.7469 |
No log | 5.1951 | 426 | 0.5548 | 0.4937 | 0.5548 | 0.7448 |
No log | 5.2195 | 428 | 0.5440 | 0.4640 | 0.5440 | 0.7376 |
No log | 5.2439 | 430 | 0.5647 | 0.4793 | 0.5647 | 0.7515 |
No log | 5.2683 | 432 | 0.6209 | 0.4847 | 0.6209 | 0.7880 |
No log | 5.2927 | 434 | 0.6476 | 0.4802 | 0.6476 | 0.8048 |
No log | 5.3171 | 436 | 0.6200 | 0.4976 | 0.6200 | 0.7874 |
No log | 5.3415 | 438 | 0.5836 | 0.6064 | 0.5836 | 0.7640 |
No log | 5.3659 | 440 | 0.5778 | 0.6322 | 0.5778 | 0.7601 |
No log | 5.3902 | 442 | 0.5719 | 0.6113 | 0.5719 | 0.7563 |
No log | 5.4146 | 444 | 0.5690 | 0.5767 | 0.5690 | 0.7544 |
No log | 5.4390 | 446 | 0.5991 | 0.5217 | 0.5991 | 0.7740 |
No log | 5.4634 | 448 | 0.6099 | 0.5217 | 0.6099 | 0.7809 |
No log | 5.4878 | 450 | 0.5865 | 0.5228 | 0.5865 | 0.7659 |
No log | 5.5122 | 452 | 0.5756 | 0.5565 | 0.5756 | 0.7587 |
No log | 5.5366 | 454 | 0.5863 | 0.5365 | 0.5863 | 0.7657 |
No log | 5.5610 | 456 | 0.6133 | 0.5080 | 0.6133 | 0.7831 |
No log | 5.5854 | 458 | 0.6034 | 0.4635 | 0.6034 | 0.7768 |
No log | 5.6098 | 460 | 0.6051 | 0.3905 | 0.6051 | 0.7779 |
No log | 5.6341 | 462 | 0.5886 | 0.3974 | 0.5886 | 0.7672 |
No log | 5.6585 | 464 | 0.5800 | 0.5256 | 0.5800 | 0.7616 |
No log | 5.6829 | 466 | 0.6024 | 0.5262 | 0.6024 | 0.7762 |
No log | 5.7073 | 468 | 0.6062 | 0.5491 | 0.6062 | 0.7786 |
No log | 5.7317 | 470 | 0.5894 | 0.5054 | 0.5894 | 0.7677 |
No log | 5.7561 | 472 | 0.6007 | 0.4852 | 0.6007 | 0.7751 |
No log | 5.7805 | 474 | 0.5999 | 0.4699 | 0.5999 | 0.7745 |
No log | 5.8049 | 476 | 0.5857 | 0.4573 | 0.5857 | 0.7653 |
No log | 5.8293 | 478 | 0.5788 | 0.4767 | 0.5788 | 0.7608 |
No log | 5.8537 | 480 | 0.5834 | 0.4823 | 0.5834 | 0.7638 |
No log | 5.8780 | 482 | 0.5848 | 0.4758 | 0.5848 | 0.7647 |
No log | 5.9024 | 484 | 0.5720 | 0.4532 | 0.5720 | 0.7563 |
No log | 5.9268 | 486 | 0.5822 | 0.5067 | 0.5822 | 0.7630 |
No log | 5.9512 | 488 | 0.5794 | 0.5319 | 0.5794 | 0.7612 |
No log | 5.9756 | 490 | 0.5971 | 0.5303 | 0.5971 | 0.7727 |
No log | 6.0 | 492 | 0.7058 | 0.4809 | 0.7058 | 0.8401 |
No log | 6.0244 | 494 | 0.8276 | 0.4076 | 0.8276 | 0.9097 |
No log | 6.0488 | 496 | 0.7830 | 0.4509 | 0.7830 | 0.8848 |
No log | 6.0732 | 498 | 0.7193 | 0.4761 | 0.7193 | 0.8481 |
0.3705 | 6.0976 | 500 | 0.6290 | 0.5211 | 0.6290 | 0.7931 |
0.3705 | 6.1220 | 502 | 0.6055 | 0.5395 | 0.6055 | 0.7781 |
0.3705 | 6.1463 | 504 | 0.6203 | 0.4866 | 0.6203 | 0.7876 |
0.3705 | 6.1707 | 506 | 0.6104 | 0.4686 | 0.6104 | 0.7813 |
0.3705 | 6.1951 | 508 | 0.6110 | 0.5084 | 0.6110 | 0.7817 |
0.3705 | 6.2195 | 510 | 0.6231 | 0.4471 | 0.6231 | 0.7894 |
0.3705 | 6.2439 | 512 | 0.6355 | 0.4630 | 0.6355 | 0.7972 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits8_usingALLEssays_FineTuningAraBERT_run2_AugV5_k16_task2_organization
Base model
aubmindlab/bert-base-arabertv02