ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k2_task2_organization
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6464
- Qwk: 0.5832
- Mse: 0.6464
- Rmse: 0.8040
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
---|---|---|---|---|---|---|
No log | 0.1538 | 2 | 4.2771 | -0.0352 | 4.2771 | 2.0681 |
No log | 0.3077 | 4 | 2.0186 | 0.0958 | 2.0186 | 1.4208 |
No log | 0.4615 | 6 | 1.1403 | 0.0205 | 1.1403 | 1.0679 |
No log | 0.6154 | 8 | 1.0027 | -0.0132 | 1.0027 | 1.0014 |
No log | 0.7692 | 10 | 1.0112 | -0.0749 | 1.0112 | 1.0056 |
No log | 0.9231 | 12 | 1.0000 | -0.0235 | 1.0000 | 1.0000 |
No log | 1.0769 | 14 | 1.0075 | -0.0286 | 1.0075 | 1.0038 |
No log | 1.2308 | 16 | 0.8282 | 0.2502 | 0.8282 | 0.9101 |
No log | 1.3846 | 18 | 0.8030 | 0.2752 | 0.8030 | 0.8961 |
No log | 1.5385 | 20 | 0.8983 | 0.0906 | 0.8983 | 0.9478 |
No log | 1.6923 | 22 | 1.0134 | 0.0686 | 1.0134 | 1.0067 |
No log | 1.8462 | 24 | 1.0145 | 0.1156 | 1.0145 | 1.0072 |
No log | 2.0 | 26 | 0.9160 | 0.1352 | 0.9160 | 0.9571 |
No log | 2.1538 | 28 | 0.8773 | 0.1590 | 0.8773 | 0.9367 |
No log | 2.3077 | 30 | 0.9070 | 0.1181 | 0.9070 | 0.9523 |
No log | 2.4615 | 32 | 0.8464 | 0.1503 | 0.8464 | 0.9200 |
No log | 2.6154 | 34 | 0.6865 | 0.3194 | 0.6865 | 0.8285 |
No log | 2.7692 | 36 | 0.6776 | 0.2732 | 0.6776 | 0.8232 |
No log | 2.9231 | 38 | 0.6647 | 0.2691 | 0.6647 | 0.8153 |
No log | 3.0769 | 40 | 0.6590 | 0.3380 | 0.6590 | 0.8118 |
No log | 3.2308 | 42 | 0.7193 | 0.3140 | 0.7193 | 0.8481 |
No log | 3.3846 | 44 | 0.8946 | 0.2975 | 0.8946 | 0.9458 |
No log | 3.5385 | 46 | 1.1001 | 0.2616 | 1.1001 | 1.0488 |
No log | 3.6923 | 48 | 1.0972 | 0.2899 | 1.0972 | 1.0475 |
No log | 3.8462 | 50 | 0.7781 | 0.3219 | 0.7781 | 0.8821 |
No log | 4.0 | 52 | 0.6789 | 0.4132 | 0.6789 | 0.8239 |
No log | 4.1538 | 54 | 0.7087 | 0.4297 | 0.7087 | 0.8418 |
No log | 4.3077 | 56 | 0.9365 | 0.3312 | 0.9365 | 0.9677 |
No log | 4.4615 | 58 | 1.0702 | 0.3387 | 1.0702 | 1.0345 |
No log | 4.6154 | 60 | 0.8751 | 0.3740 | 0.8751 | 0.9355 |
No log | 4.7692 | 62 | 0.7418 | 0.4477 | 0.7418 | 0.8613 |
No log | 4.9231 | 64 | 0.7500 | 0.4676 | 0.7500 | 0.8660 |
No log | 5.0769 | 66 | 0.7788 | 0.4716 | 0.7788 | 0.8825 |
No log | 5.2308 | 68 | 0.8343 | 0.4503 | 0.8343 | 0.9134 |
No log | 5.3846 | 70 | 0.8742 | 0.3872 | 0.8742 | 0.9350 |
No log | 5.5385 | 72 | 0.8767 | 0.4190 | 0.8767 | 0.9363 |
No log | 5.6923 | 74 | 0.8144 | 0.4750 | 0.8144 | 0.9024 |
No log | 5.8462 | 76 | 0.8107 | 0.4354 | 0.8107 | 0.9004 |
No log | 6.0 | 78 | 0.7959 | 0.4778 | 0.7959 | 0.8921 |
No log | 6.1538 | 80 | 0.7734 | 0.4958 | 0.7734 | 0.8794 |
No log | 6.3077 | 82 | 0.7693 | 0.4893 | 0.7693 | 0.8771 |
No log | 6.4615 | 84 | 0.7724 | 0.5102 | 0.7724 | 0.8788 |
No log | 6.6154 | 86 | 0.8108 | 0.5207 | 0.8108 | 0.9005 |
No log | 6.7692 | 88 | 0.8080 | 0.5336 | 0.8080 | 0.8989 |
No log | 6.9231 | 90 | 0.8388 | 0.4825 | 0.8388 | 0.9159 |
No log | 7.0769 | 92 | 0.8807 | 0.4242 | 0.8807 | 0.9385 |
No log | 7.2308 | 94 | 0.8704 | 0.4908 | 0.8704 | 0.9329 |
No log | 7.3846 | 96 | 0.9305 | 0.4859 | 0.9305 | 0.9646 |
No log | 7.5385 | 98 | 1.1316 | 0.4085 | 1.1316 | 1.0637 |
No log | 7.6923 | 100 | 1.1223 | 0.4084 | 1.1223 | 1.0594 |
No log | 7.8462 | 102 | 0.8811 | 0.48 | 0.8811 | 0.9387 |
No log | 8.0 | 104 | 0.7712 | 0.5585 | 0.7712 | 0.8782 |
No log | 8.1538 | 106 | 0.7333 | 0.5349 | 0.7333 | 0.8563 |
No log | 8.3077 | 108 | 0.6829 | 0.5581 | 0.6829 | 0.8264 |
No log | 8.4615 | 110 | 0.6937 | 0.5745 | 0.6937 | 0.8329 |
No log | 8.6154 | 112 | 0.7656 | 0.5482 | 0.7656 | 0.8750 |
No log | 8.7692 | 114 | 0.8477 | 0.5048 | 0.8477 | 0.9207 |
No log | 8.9231 | 116 | 0.9125 | 0.4920 | 0.9125 | 0.9553 |
No log | 9.0769 | 118 | 0.9557 | 0.4682 | 0.9557 | 0.9776 |
No log | 9.2308 | 120 | 0.8779 | 0.4400 | 0.8779 | 0.9370 |
No log | 9.3846 | 122 | 0.7594 | 0.4681 | 0.7594 | 0.8715 |
No log | 9.5385 | 124 | 0.7104 | 0.5090 | 0.7104 | 0.8428 |
No log | 9.6923 | 126 | 0.6551 | 0.5023 | 0.6551 | 0.8094 |
No log | 9.8462 | 128 | 0.6396 | 0.5091 | 0.6396 | 0.7998 |
No log | 10.0 | 130 | 0.6491 | 0.5271 | 0.6491 | 0.8057 |
No log | 10.1538 | 132 | 0.6489 | 0.4820 | 0.6489 | 0.8055 |
No log | 10.3077 | 134 | 0.7087 | 0.4826 | 0.7087 | 0.8419 |
No log | 10.4615 | 136 | 0.7293 | 0.4938 | 0.7293 | 0.8540 |
No log | 10.6154 | 138 | 0.7632 | 0.4986 | 0.7632 | 0.8736 |
No log | 10.7692 | 140 | 0.7170 | 0.5181 | 0.7170 | 0.8467 |
No log | 10.9231 | 142 | 0.7115 | 0.4998 | 0.7115 | 0.8435 |
No log | 11.0769 | 144 | 0.7100 | 0.5010 | 0.7100 | 0.8426 |
No log | 11.2308 | 146 | 0.7349 | 0.5254 | 0.7349 | 0.8572 |
No log | 11.3846 | 148 | 0.7423 | 0.5420 | 0.7423 | 0.8616 |
No log | 11.5385 | 150 | 0.7522 | 0.4866 | 0.7522 | 0.8673 |
No log | 11.6923 | 152 | 0.7246 | 0.4820 | 0.7246 | 0.8512 |
No log | 11.8462 | 154 | 0.6924 | 0.5615 | 0.6924 | 0.8321 |
No log | 12.0 | 156 | 0.6808 | 0.5411 | 0.6808 | 0.8251 |
No log | 12.1538 | 158 | 0.5883 | 0.5532 | 0.5883 | 0.7670 |
No log | 12.3077 | 160 | 0.5882 | 0.5426 | 0.5882 | 0.7669 |
No log | 12.4615 | 162 | 0.5990 | 0.5650 | 0.5990 | 0.7739 |
No log | 12.6154 | 164 | 0.7495 | 0.5306 | 0.7495 | 0.8658 |
No log | 12.7692 | 166 | 0.7832 | 0.5047 | 0.7832 | 0.8850 |
No log | 12.9231 | 168 | 0.7067 | 0.5283 | 0.7067 | 0.8407 |
No log | 13.0769 | 170 | 0.6155 | 0.5291 | 0.6155 | 0.7846 |
No log | 13.2308 | 172 | 0.6024 | 0.5471 | 0.6024 | 0.7761 |
No log | 13.3846 | 174 | 0.5905 | 0.5704 | 0.5905 | 0.7684 |
No log | 13.5385 | 176 | 0.6106 | 0.5529 | 0.6106 | 0.7814 |
No log | 13.6923 | 178 | 0.6943 | 0.5168 | 0.6943 | 0.8333 |
No log | 13.8462 | 180 | 0.7144 | 0.5627 | 0.7144 | 0.8452 |
No log | 14.0 | 182 | 0.6687 | 0.5675 | 0.6687 | 0.8178 |
No log | 14.1538 | 184 | 0.6782 | 0.4807 | 0.6782 | 0.8235 |
No log | 14.3077 | 186 | 0.7099 | 0.4618 | 0.7099 | 0.8426 |
No log | 14.4615 | 188 | 0.6887 | 0.5169 | 0.6887 | 0.8299 |
No log | 14.6154 | 190 | 0.6720 | 0.5712 | 0.6720 | 0.8197 |
No log | 14.7692 | 192 | 0.6491 | 0.5458 | 0.6491 | 0.8056 |
No log | 14.9231 | 194 | 0.6018 | 0.5658 | 0.6018 | 0.7757 |
No log | 15.0769 | 196 | 0.5951 | 0.5516 | 0.5951 | 0.7714 |
No log | 15.2308 | 198 | 0.6117 | 0.5715 | 0.6117 | 0.7821 |
No log | 15.3846 | 200 | 0.6429 | 0.5277 | 0.6429 | 0.8018 |
No log | 15.5385 | 202 | 0.6620 | 0.5160 | 0.6620 | 0.8137 |
No log | 15.6923 | 204 | 0.6832 | 0.5093 | 0.6832 | 0.8265 |
No log | 15.8462 | 206 | 0.6950 | 0.5107 | 0.6950 | 0.8337 |
No log | 16.0 | 208 | 0.7089 | 0.4992 | 0.7089 | 0.8420 |
No log | 16.1538 | 210 | 0.6872 | 0.5015 | 0.6872 | 0.8290 |
No log | 16.3077 | 212 | 0.6353 | 0.5123 | 0.6353 | 0.7971 |
No log | 16.4615 | 214 | 0.6430 | 0.5332 | 0.6430 | 0.8019 |
No log | 16.6154 | 216 | 0.6180 | 0.5602 | 0.6180 | 0.7862 |
No log | 16.7692 | 218 | 0.6113 | 0.5381 | 0.6113 | 0.7818 |
No log | 16.9231 | 220 | 0.6666 | 0.5128 | 0.6666 | 0.8164 |
No log | 17.0769 | 222 | 0.7394 | 0.5235 | 0.7394 | 0.8599 |
No log | 17.2308 | 224 | 0.8032 | 0.5556 | 0.8032 | 0.8962 |
No log | 17.3846 | 226 | 0.8165 | 0.5476 | 0.8165 | 0.9036 |
No log | 17.5385 | 228 | 0.7939 | 0.5157 | 0.7939 | 0.8910 |
No log | 17.6923 | 230 | 0.7732 | 0.4838 | 0.7732 | 0.8793 |
No log | 17.8462 | 232 | 0.7413 | 0.4728 | 0.7413 | 0.8610 |
No log | 18.0 | 234 | 0.7292 | 0.5541 | 0.7292 | 0.8539 |
No log | 18.1538 | 236 | 0.7187 | 0.5432 | 0.7187 | 0.8478 |
No log | 18.3077 | 238 | 0.6944 | 0.5149 | 0.6944 | 0.8333 |
No log | 18.4615 | 240 | 0.6654 | 0.5195 | 0.6654 | 0.8157 |
No log | 18.6154 | 242 | 0.6607 | 0.4909 | 0.6607 | 0.8128 |
No log | 18.7692 | 244 | 0.6935 | 0.4652 | 0.6935 | 0.8328 |
No log | 18.9231 | 246 | 0.6998 | 0.4986 | 0.6998 | 0.8366 |
No log | 19.0769 | 248 | 0.7290 | 0.5546 | 0.7290 | 0.8538 |
No log | 19.2308 | 250 | 0.7936 | 0.5585 | 0.7936 | 0.8908 |
No log | 19.3846 | 252 | 0.7901 | 0.5280 | 0.7901 | 0.8889 |
No log | 19.5385 | 254 | 0.8033 | 0.4964 | 0.8033 | 0.8963 |
No log | 19.6923 | 256 | 0.8327 | 0.4533 | 0.8327 | 0.9125 |
No log | 19.8462 | 258 | 0.9318 | 0.3819 | 0.9318 | 0.9653 |
No log | 20.0 | 260 | 0.8647 | 0.4202 | 0.8647 | 0.9299 |
No log | 20.1538 | 262 | 0.6947 | 0.4765 | 0.6947 | 0.8335 |
No log | 20.3077 | 264 | 0.6302 | 0.5656 | 0.6302 | 0.7939 |
No log | 20.4615 | 266 | 0.6248 | 0.5223 | 0.6248 | 0.7904 |
No log | 20.6154 | 268 | 0.6314 | 0.5149 | 0.6314 | 0.7946 |
No log | 20.7692 | 270 | 0.6348 | 0.5229 | 0.6348 | 0.7968 |
No log | 20.9231 | 272 | 0.6821 | 0.5030 | 0.6821 | 0.8259 |
No log | 21.0769 | 274 | 0.6546 | 0.5416 | 0.6546 | 0.8091 |
No log | 21.2308 | 276 | 0.6464 | 0.5060 | 0.6464 | 0.8040 |
No log | 21.3846 | 278 | 0.6885 | 0.4853 | 0.6885 | 0.8298 |
No log | 21.5385 | 280 | 0.7666 | 0.4336 | 0.7666 | 0.8756 |
No log | 21.6923 | 282 | 0.7463 | 0.4867 | 0.7463 | 0.8639 |
No log | 21.8462 | 284 | 0.6825 | 0.5507 | 0.6825 | 0.8262 |
No log | 22.0 | 286 | 0.7221 | 0.5207 | 0.7221 | 0.8497 |
No log | 22.1538 | 288 | 0.7018 | 0.525 | 0.7018 | 0.8377 |
No log | 22.3077 | 290 | 0.6325 | 0.5422 | 0.6325 | 0.7953 |
No log | 22.4615 | 292 | 0.6167 | 0.5291 | 0.6167 | 0.7853 |
No log | 22.6154 | 294 | 0.5875 | 0.4689 | 0.5875 | 0.7665 |
No log | 22.7692 | 296 | 0.6017 | 0.5148 | 0.6017 | 0.7757 |
No log | 22.9231 | 298 | 0.6897 | 0.5095 | 0.6897 | 0.8305 |
No log | 23.0769 | 300 | 0.7915 | 0.4788 | 0.7915 | 0.8896 |
No log | 23.2308 | 302 | 0.7665 | 0.5031 | 0.7665 | 0.8755 |
No log | 23.3846 | 304 | 0.7100 | 0.4945 | 0.7100 | 0.8426 |
No log | 23.5385 | 306 | 0.6678 | 0.5239 | 0.6678 | 0.8172 |
No log | 23.6923 | 308 | 0.6453 | 0.5310 | 0.6453 | 0.8033 |
No log | 23.8462 | 310 | 0.6505 | 0.5310 | 0.6505 | 0.8065 |
No log | 24.0 | 312 | 0.6550 | 0.5294 | 0.6550 | 0.8093 |
No log | 24.1538 | 314 | 0.6312 | 0.5463 | 0.6312 | 0.7945 |
No log | 24.3077 | 316 | 0.6325 | 0.5130 | 0.6325 | 0.7953 |
No log | 24.4615 | 318 | 0.6046 | 0.4920 | 0.6046 | 0.7775 |
No log | 24.6154 | 320 | 0.6176 | 0.4946 | 0.6176 | 0.7859 |
No log | 24.7692 | 322 | 0.6584 | 0.4969 | 0.6584 | 0.8114 |
No log | 24.9231 | 324 | 0.6744 | 0.5097 | 0.6744 | 0.8212 |
No log | 25.0769 | 326 | 0.6595 | 0.5251 | 0.6595 | 0.8121 |
No log | 25.2308 | 328 | 0.6746 | 0.4496 | 0.6746 | 0.8214 |
No log | 25.3846 | 330 | 0.6845 | 0.4475 | 0.6845 | 0.8273 |
No log | 25.5385 | 332 | 0.6397 | 0.4681 | 0.6397 | 0.7998 |
No log | 25.6923 | 334 | 0.6237 | 0.5491 | 0.6237 | 0.7897 |
No log | 25.8462 | 336 | 0.6387 | 0.5536 | 0.6387 | 0.7992 |
No log | 26.0 | 338 | 0.6367 | 0.5314 | 0.6367 | 0.7979 |
No log | 26.1538 | 340 | 0.6171 | 0.5387 | 0.6171 | 0.7856 |
No log | 26.3077 | 342 | 0.6133 | 0.5566 | 0.6133 | 0.7831 |
No log | 26.4615 | 344 | 0.6049 | 0.5594 | 0.6049 | 0.7778 |
No log | 26.6154 | 346 | 0.5932 | 0.5410 | 0.5932 | 0.7702 |
No log | 26.7692 | 348 | 0.6239 | 0.5800 | 0.6239 | 0.7899 |
No log | 26.9231 | 350 | 0.7361 | 0.4960 | 0.7361 | 0.8580 |
No log | 27.0769 | 352 | 0.7831 | 0.4851 | 0.7831 | 0.8849 |
No log | 27.2308 | 354 | 0.7192 | 0.5100 | 0.7192 | 0.8481 |
No log | 27.3846 | 356 | 0.6085 | 0.5600 | 0.6085 | 0.7800 |
No log | 27.5385 | 358 | 0.5583 | 0.5203 | 0.5583 | 0.7472 |
No log | 27.6923 | 360 | 0.5550 | 0.5122 | 0.5550 | 0.7450 |
No log | 27.8462 | 362 | 0.5810 | 0.5398 | 0.5810 | 0.7622 |
No log | 28.0 | 364 | 0.6158 | 0.5631 | 0.6158 | 0.7847 |
No log | 28.1538 | 366 | 0.6433 | 0.5469 | 0.6433 | 0.8021 |
No log | 28.3077 | 368 | 0.6837 | 0.5687 | 0.6837 | 0.8269 |
No log | 28.4615 | 370 | 0.6752 | 0.5884 | 0.6752 | 0.8217 |
No log | 28.6154 | 372 | 0.6354 | 0.5316 | 0.6354 | 0.7971 |
No log | 28.7692 | 374 | 0.6345 | 0.5040 | 0.6345 | 0.7966 |
No log | 28.9231 | 376 | 0.6326 | 0.4997 | 0.6326 | 0.7953 |
No log | 29.0769 | 378 | 0.6182 | 0.4883 | 0.6182 | 0.7863 |
No log | 29.2308 | 380 | 0.6234 | 0.5362 | 0.6234 | 0.7895 |
No log | 29.3846 | 382 | 0.6952 | 0.5844 | 0.6952 | 0.8338 |
No log | 29.5385 | 384 | 0.7435 | 0.5442 | 0.7435 | 0.8623 |
No log | 29.6923 | 386 | 0.7197 | 0.5524 | 0.7197 | 0.8484 |
No log | 29.8462 | 388 | 0.6496 | 0.5830 | 0.6496 | 0.8060 |
No log | 30.0 | 390 | 0.6163 | 0.5655 | 0.6163 | 0.7850 |
No log | 30.1538 | 392 | 0.5958 | 0.5920 | 0.5958 | 0.7719 |
No log | 30.3077 | 394 | 0.5962 | 0.5896 | 0.5962 | 0.7721 |
No log | 30.4615 | 396 | 0.6161 | 0.6020 | 0.6161 | 0.7849 |
No log | 30.6154 | 398 | 0.6330 | 0.6053 | 0.6330 | 0.7956 |
No log | 30.7692 | 400 | 0.6198 | 0.5964 | 0.6198 | 0.7873 |
No log | 30.9231 | 402 | 0.6055 | 0.5964 | 0.6055 | 0.7781 |
No log | 31.0769 | 404 | 0.5744 | 0.5731 | 0.5744 | 0.7579 |
No log | 31.2308 | 406 | 0.5555 | 0.5676 | 0.5555 | 0.7453 |
No log | 31.3846 | 408 | 0.5490 | 0.5296 | 0.5490 | 0.7410 |
No log | 31.5385 | 410 | 0.5583 | 0.5551 | 0.5583 | 0.7472 |
No log | 31.6923 | 412 | 0.5754 | 0.5818 | 0.5754 | 0.7586 |
No log | 31.8462 | 414 | 0.6047 | 0.5748 | 0.6047 | 0.7776 |
No log | 32.0 | 416 | 0.6142 | 0.5813 | 0.6142 | 0.7837 |
No log | 32.1538 | 418 | 0.6194 | 0.5923 | 0.6194 | 0.7870 |
No log | 32.3077 | 420 | 0.5924 | 0.5933 | 0.5924 | 0.7697 |
No log | 32.4615 | 422 | 0.5756 | 0.5872 | 0.5756 | 0.7587 |
No log | 32.6154 | 424 | 0.5563 | 0.5654 | 0.5563 | 0.7458 |
No log | 32.7692 | 426 | 0.5596 | 0.5796 | 0.5596 | 0.7481 |
No log | 32.9231 | 428 | 0.5677 | 0.5647 | 0.5677 | 0.7535 |
No log | 33.0769 | 430 | 0.5711 | 0.5568 | 0.5711 | 0.7557 |
No log | 33.2308 | 432 | 0.5802 | 0.5854 | 0.5802 | 0.7617 |
No log | 33.3846 | 434 | 0.5746 | 0.5341 | 0.5746 | 0.7580 |
No log | 33.5385 | 436 | 0.5670 | 0.5402 | 0.5670 | 0.7530 |
No log | 33.6923 | 438 | 0.5656 | 0.5527 | 0.5656 | 0.7520 |
No log | 33.8462 | 440 | 0.5894 | 0.5468 | 0.5894 | 0.7677 |
No log | 34.0 | 442 | 0.6198 | 0.5524 | 0.6198 | 0.7873 |
No log | 34.1538 | 444 | 0.6054 | 0.5547 | 0.6054 | 0.7781 |
No log | 34.3077 | 446 | 0.6019 | 0.5120 | 0.6019 | 0.7758 |
No log | 34.4615 | 448 | 0.5871 | 0.5141 | 0.5871 | 0.7663 |
No log | 34.6154 | 450 | 0.5892 | 0.5193 | 0.5892 | 0.7676 |
No log | 34.7692 | 452 | 0.6031 | 0.4998 | 0.6031 | 0.7766 |
No log | 34.9231 | 454 | 0.6413 | 0.5911 | 0.6413 | 0.8008 |
No log | 35.0769 | 456 | 0.6446 | 0.5814 | 0.6446 | 0.8029 |
No log | 35.2308 | 458 | 0.6495 | 0.5602 | 0.6495 | 0.8059 |
No log | 35.3846 | 460 | 0.6251 | 0.5758 | 0.6251 | 0.7906 |
No log | 35.5385 | 462 | 0.6210 | 0.5758 | 0.6210 | 0.7880 |
No log | 35.6923 | 464 | 0.6035 | 0.5133 | 0.6035 | 0.7768 |
No log | 35.8462 | 466 | 0.6064 | 0.5130 | 0.6064 | 0.7787 |
No log | 36.0 | 468 | 0.6383 | 0.5738 | 0.6383 | 0.7989 |
No log | 36.1538 | 470 | 0.6388 | 0.5893 | 0.6388 | 0.7992 |
No log | 36.3077 | 472 | 0.6314 | 0.5800 | 0.6314 | 0.7946 |
No log | 36.4615 | 474 | 0.6065 | 0.5166 | 0.6065 | 0.7788 |
No log | 36.6154 | 476 | 0.6077 | 0.5091 | 0.6077 | 0.7796 |
No log | 36.7692 | 478 | 0.6256 | 0.5162 | 0.6256 | 0.7910 |
No log | 36.9231 | 480 | 0.6459 | 0.5499 | 0.6459 | 0.8037 |
No log | 37.0769 | 482 | 0.6578 | 0.5689 | 0.6578 | 0.8110 |
No log | 37.2308 | 484 | 0.6555 | 0.5199 | 0.6555 | 0.8096 |
No log | 37.3846 | 486 | 0.6576 | 0.5035 | 0.6576 | 0.8109 |
No log | 37.5385 | 488 | 0.6663 | 0.5106 | 0.6663 | 0.8162 |
No log | 37.6923 | 490 | 0.6870 | 0.4715 | 0.6870 | 0.8288 |
No log | 37.8462 | 492 | 0.6921 | 0.5050 | 0.6921 | 0.8319 |
No log | 38.0 | 494 | 0.6858 | 0.5324 | 0.6858 | 0.8281 |
No log | 38.1538 | 496 | 0.6847 | 0.5518 | 0.6847 | 0.8275 |
No log | 38.3077 | 498 | 0.6878 | 0.5745 | 0.6878 | 0.8294 |
0.3 | 38.4615 | 500 | 0.6833 | 0.5851 | 0.6833 | 0.8266 |
0.3 | 38.6154 | 502 | 0.6438 | 0.5671 | 0.6438 | 0.8024 |
0.3 | 38.7692 | 504 | 0.6002 | 0.5482 | 0.6002 | 0.7747 |
0.3 | 38.9231 | 506 | 0.5989 | 0.5743 | 0.5989 | 0.7739 |
0.3 | 39.0769 | 508 | 0.6393 | 0.5659 | 0.6393 | 0.7996 |
0.3 | 39.2308 | 510 | 0.6464 | 0.5832 | 0.6464 | 0.8040 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for MayBashendy/ArabicNewSplits8_usingWellWrittenEssays_FineTuningAraBERT_run3_AugV5_k2_task2_organization
Base model
aubmindlab/bert-base-arabertv02