Update README.md
#1
by
MaziyarPanahi
- opened
README.md
CHANGED
@@ -8,4 +8,389 @@ tags:
|
|
8 |
|
9 |
Merge of top 7B models and the SLERP of other 7B models
|
10 |
|
11 |
-
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
Merge of top 7B models and the SLERP of other 7B models
|
10 |
|
11 |
+
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
12 |
+
>
|
13 |
+
> ## Eval
|
14 |
+
> ```python
|
15 |
+
> {
|
16 |
+
"all": {
|
17 |
+
"acc": 0.6571641282160704,
|
18 |
+
"acc_stderr": 0.031918970852064334,
|
19 |
+
"acc_norm": 0.6561506230894164,
|
20 |
+
"acc_norm_stderr": 0.03258982989656136,
|
21 |
+
"mc1": 0.4834761321909425,
|
22 |
+
"mc1_stderr": 0.017493940190057723,
|
23 |
+
"mc2": 0.6447306680251751,
|
24 |
+
"mc2_stderr": 0.015519245883344577
|
25 |
+
},
|
26 |
+
"harness|arc:challenge|25": {
|
27 |
+
"acc": 0.689419795221843,
|
28 |
+
"acc_stderr": 0.01352229209805306,
|
29 |
+
"acc_norm": 0.7090443686006825,
|
30 |
+
"acc_norm_stderr": 0.013273077865907595
|
31 |
+
},
|
32 |
+
"harness|hellaswag|10": {
|
33 |
+
"acc": 0.7168890659231228,
|
34 |
+
"acc_stderr": 0.004495891440519419,
|
35 |
+
"acc_norm": 0.8800039832702649,
|
36 |
+
"acc_norm_stderr": 0.0032429275808698544
|
37 |
+
},
|
38 |
+
"harness|hendrycksTest-abstract_algebra|5": {
|
39 |
+
"acc": 0.33,
|
40 |
+
"acc_stderr": 0.047258156262526045,
|
41 |
+
"acc_norm": 0.33,
|
42 |
+
"acc_norm_stderr": 0.047258156262526045
|
43 |
+
},
|
44 |
+
"harness|hendrycksTest-anatomy|5": {
|
45 |
+
"acc": 0.6370370370370371,
|
46 |
+
"acc_stderr": 0.04153948404742398,
|
47 |
+
"acc_norm": 0.6370370370370371,
|
48 |
+
"acc_norm_stderr": 0.04153948404742398
|
49 |
+
},
|
50 |
+
"harness|hendrycksTest-astronomy|5": {
|
51 |
+
"acc": 0.7105263157894737,
|
52 |
+
"acc_stderr": 0.03690677986137283,
|
53 |
+
"acc_norm": 0.7105263157894737,
|
54 |
+
"acc_norm_stderr": 0.03690677986137283
|
55 |
+
},
|
56 |
+
"harness|hendrycksTest-business_ethics|5": {
|
57 |
+
"acc": 0.65,
|
58 |
+
"acc_stderr": 0.0479372485441102,
|
59 |
+
"acc_norm": 0.65,
|
60 |
+
"acc_norm_stderr": 0.0479372485441102
|
61 |
+
},
|
62 |
+
"harness|hendrycksTest-clinical_knowledge|5": {
|
63 |
+
"acc": 0.6981132075471698,
|
64 |
+
"acc_stderr": 0.02825420034443866,
|
65 |
+
"acc_norm": 0.6981132075471698,
|
66 |
+
"acc_norm_stderr": 0.02825420034443866
|
67 |
+
},
|
68 |
+
"harness|hendrycksTest-college_biology|5": {
|
69 |
+
"acc": 0.7638888888888888,
|
70 |
+
"acc_stderr": 0.03551446610810826,
|
71 |
+
"acc_norm": 0.7638888888888888,
|
72 |
+
"acc_norm_stderr": 0.03551446610810826
|
73 |
+
},
|
74 |
+
"harness|hendrycksTest-college_chemistry|5": {
|
75 |
+
"acc": 0.48,
|
76 |
+
"acc_stderr": 0.050211673156867795,
|
77 |
+
"acc_norm": 0.48,
|
78 |
+
"acc_norm_stderr": 0.050211673156867795
|
79 |
+
},
|
80 |
+
"harness|hendrycksTest-college_computer_science|5": {
|
81 |
+
"acc": 0.56,
|
82 |
+
"acc_stderr": 0.049888765156985884,
|
83 |
+
"acc_norm": 0.56,
|
84 |
+
"acc_norm_stderr": 0.049888765156985884
|
85 |
+
},
|
86 |
+
"harness|hendrycksTest-college_mathematics|5": {
|
87 |
+
"acc": 0.27,
|
88 |
+
"acc_stderr": 0.0446196043338474,
|
89 |
+
"acc_norm": 0.27,
|
90 |
+
"acc_norm_stderr": 0.0446196043338474
|
91 |
+
},
|
92 |
+
"harness|hendrycksTest-college_medicine|5": {
|
93 |
+
"acc": 0.6589595375722543,
|
94 |
+
"acc_stderr": 0.03614665424180826,
|
95 |
+
"acc_norm": 0.6589595375722543,
|
96 |
+
"acc_norm_stderr": 0.03614665424180826
|
97 |
+
},
|
98 |
+
"harness|hendrycksTest-college_physics|5": {
|
99 |
+
"acc": 0.4117647058823529,
|
100 |
+
"acc_stderr": 0.048971049527263666,
|
101 |
+
"acc_norm": 0.4117647058823529,
|
102 |
+
"acc_norm_stderr": 0.048971049527263666
|
103 |
+
},
|
104 |
+
"harness|hendrycksTest-computer_security|5": {
|
105 |
+
"acc": 0.75,
|
106 |
+
"acc_stderr": 0.04351941398892446,
|
107 |
+
"acc_norm": 0.75,
|
108 |
+
"acc_norm_stderr": 0.04351941398892446
|
109 |
+
},
|
110 |
+
"harness|hendrycksTest-conceptual_physics|5": {
|
111 |
+
"acc": 0.5787234042553191,
|
112 |
+
"acc_stderr": 0.03227834510146268,
|
113 |
+
"acc_norm": 0.5787234042553191,
|
114 |
+
"acc_norm_stderr": 0.03227834510146268
|
115 |
+
},
|
116 |
+
"harness|hendrycksTest-econometrics|5": {
|
117 |
+
"acc": 0.5175438596491229,
|
118 |
+
"acc_stderr": 0.04700708033551038,
|
119 |
+
"acc_norm": 0.5175438596491229,
|
120 |
+
"acc_norm_stderr": 0.04700708033551038
|
121 |
+
},
|
122 |
+
"harness|hendrycksTest-electrical_engineering|5": {
|
123 |
+
"acc": 0.5655172413793104,
|
124 |
+
"acc_stderr": 0.04130740879555497,
|
125 |
+
"acc_norm": 0.5655172413793104,
|
126 |
+
"acc_norm_stderr": 0.04130740879555497
|
127 |
+
},
|
128 |
+
"harness|hendrycksTest-elementary_mathematics|5": {
|
129 |
+
"acc": 0.4312169312169312,
|
130 |
+
"acc_stderr": 0.02550648169813821,
|
131 |
+
"acc_norm": 0.4312169312169312,
|
132 |
+
"acc_norm_stderr": 0.02550648169813821
|
133 |
+
},
|
134 |
+
"harness|hendrycksTest-formal_logic|5": {
|
135 |
+
"acc": 0.48412698412698413,
|
136 |
+
"acc_stderr": 0.04469881854072606,
|
137 |
+
"acc_norm": 0.48412698412698413,
|
138 |
+
"acc_norm_stderr": 0.04469881854072606
|
139 |
+
},
|
140 |
+
"harness|hendrycksTest-global_facts|5": {
|
141 |
+
"acc": 0.33,
|
142 |
+
"acc_stderr": 0.04725815626252604,
|
143 |
+
"acc_norm": 0.33,
|
144 |
+
"acc_norm_stderr": 0.04725815626252604
|
145 |
+
},
|
146 |
+
"harness|hendrycksTest-high_school_biology|5": {
|
147 |
+
"acc": 0.7838709677419354,
|
148 |
+
"acc_stderr": 0.02341529343356853,
|
149 |
+
"acc_norm": 0.7838709677419354,
|
150 |
+
"acc_norm_stderr": 0.02341529343356853
|
151 |
+
},
|
152 |
+
"harness|hendrycksTest-high_school_chemistry|5": {
|
153 |
+
"acc": 0.4975369458128079,
|
154 |
+
"acc_stderr": 0.03517945038691063,
|
155 |
+
"acc_norm": 0.4975369458128079,
|
156 |
+
"acc_norm_stderr": 0.03517945038691063
|
157 |
+
},
|
158 |
+
"harness|hendrycksTest-high_school_computer_science|5": {
|
159 |
+
"acc": 0.67,
|
160 |
+
"acc_stderr": 0.04725815626252607,
|
161 |
+
"acc_norm": 0.67,
|
162 |
+
"acc_norm_stderr": 0.04725815626252607
|
163 |
+
},
|
164 |
+
"harness|hendrycksTest-high_school_european_history|5": {
|
165 |
+
"acc": 0.7878787878787878,
|
166 |
+
"acc_stderr": 0.031922715695483,
|
167 |
+
"acc_norm": 0.7878787878787878,
|
168 |
+
"acc_norm_stderr": 0.031922715695483
|
169 |
+
},
|
170 |
+
"harness|hendrycksTest-high_school_geography|5": {
|
171 |
+
"acc": 0.7929292929292929,
|
172 |
+
"acc_stderr": 0.028869778460267045,
|
173 |
+
"acc_norm": 0.7929292929292929,
|
174 |
+
"acc_norm_stderr": 0.028869778460267045
|
175 |
+
},
|
176 |
+
"harness|hendrycksTest-high_school_government_and_politics|5": {
|
177 |
+
"acc": 0.9015544041450777,
|
178 |
+
"acc_stderr": 0.021500249576033456,
|
179 |
+
"acc_norm": 0.9015544041450777,
|
180 |
+
"acc_norm_stderr": 0.021500249576033456
|
181 |
+
},
|
182 |
+
"harness|hendrycksTest-high_school_macroeconomics|5": {
|
183 |
+
"acc": 0.6666666666666666,
|
184 |
+
"acc_stderr": 0.023901157979402534,
|
185 |
+
"acc_norm": 0.6666666666666666,
|
186 |
+
"acc_norm_stderr": 0.023901157979402534
|
187 |
+
},
|
188 |
+
"harness|hendrycksTest-high_school_mathematics|5": {
|
189 |
+
"acc": 0.34814814814814815,
|
190 |
+
"acc_stderr": 0.029045600290616255,
|
191 |
+
"acc_norm": 0.34814814814814815,
|
192 |
+
"acc_norm_stderr": 0.029045600290616255
|
193 |
+
},
|
194 |
+
"harness|hendrycksTest-high_school_microeconomics|5": {
|
195 |
+
"acc": 0.680672268907563,
|
196 |
+
"acc_stderr": 0.030283995525884396,
|
197 |
+
"acc_norm": 0.680672268907563,
|
198 |
+
"acc_norm_stderr": 0.030283995525884396
|
199 |
+
},
|
200 |
+
"harness|hendrycksTest-high_school_physics|5": {
|
201 |
+
"acc": 0.33112582781456956,
|
202 |
+
"acc_stderr": 0.038425817186598696,
|
203 |
+
"acc_norm": 0.33112582781456956,
|
204 |
+
"acc_norm_stderr": 0.038425817186598696
|
205 |
+
},
|
206 |
+
"harness|hendrycksTest-high_school_psychology|5": {
|
207 |
+
"acc": 0.8385321100917431,
|
208 |
+
"acc_stderr": 0.015776239256163224,
|
209 |
+
"acc_norm": 0.8385321100917431,
|
210 |
+
"acc_norm_stderr": 0.015776239256163224
|
211 |
+
},
|
212 |
+
"harness|hendrycksTest-high_school_statistics|5": {
|
213 |
+
"acc": 0.5138888888888888,
|
214 |
+
"acc_stderr": 0.03408655867977749,
|
215 |
+
"acc_norm": 0.5138888888888888,
|
216 |
+
"acc_norm_stderr": 0.03408655867977749
|
217 |
+
},
|
218 |
+
"harness|hendrycksTest-high_school_us_history|5": {
|
219 |
+
"acc": 0.8578431372549019,
|
220 |
+
"acc_stderr": 0.024509803921568603,
|
221 |
+
"acc_norm": 0.8578431372549019,
|
222 |
+
"acc_norm_stderr": 0.024509803921568603
|
223 |
+
},
|
224 |
+
"harness|hendrycksTest-high_school_world_history|5": {
|
225 |
+
"acc": 0.8143459915611815,
|
226 |
+
"acc_stderr": 0.025310495376944856,
|
227 |
+
"acc_norm": 0.8143459915611815,
|
228 |
+
"acc_norm_stderr": 0.025310495376944856
|
229 |
+
},
|
230 |
+
"harness|hendrycksTest-human_aging|5": {
|
231 |
+
"acc": 0.6860986547085202,
|
232 |
+
"acc_stderr": 0.031146796482972465,
|
233 |
+
"acc_norm": 0.6860986547085202,
|
234 |
+
"acc_norm_stderr": 0.031146796482972465
|
235 |
+
},
|
236 |
+
"harness|hendrycksTest-human_sexuality|5": {
|
237 |
+
"acc": 0.7862595419847328,
|
238 |
+
"acc_stderr": 0.0359546161177469,
|
239 |
+
"acc_norm": 0.7862595419847328,
|
240 |
+
"acc_norm_stderr": 0.0359546161177469
|
241 |
+
},
|
242 |
+
"harness|hendrycksTest-international_law|5": {
|
243 |
+
"acc": 0.8099173553719008,
|
244 |
+
"acc_stderr": 0.03581796951709282,
|
245 |
+
"acc_norm": 0.8099173553719008,
|
246 |
+
"acc_norm_stderr": 0.03581796951709282
|
247 |
+
},
|
248 |
+
"harness|hendrycksTest-jurisprudence|5": {
|
249 |
+
"acc": 0.7962962962962963,
|
250 |
+
"acc_stderr": 0.03893542518824847,
|
251 |
+
"acc_norm": 0.7962962962962963,
|
252 |
+
"acc_norm_stderr": 0.03893542518824847
|
253 |
+
},
|
254 |
+
"harness|hendrycksTest-logical_fallacies|5": {
|
255 |
+
"acc": 0.7730061349693251,
|
256 |
+
"acc_stderr": 0.03291099578615769,
|
257 |
+
"acc_norm": 0.7730061349693251,
|
258 |
+
"acc_norm_stderr": 0.03291099578615769
|
259 |
+
},
|
260 |
+
"harness|hendrycksTest-machine_learning|5": {
|
261 |
+
"acc": 0.5,
|
262 |
+
"acc_stderr": 0.04745789978762494,
|
263 |
+
"acc_norm": 0.5,
|
264 |
+
"acc_norm_stderr": 0.04745789978762494
|
265 |
+
},
|
266 |
+
"harness|hendrycksTest-management|5": {
|
267 |
+
"acc": 0.7961165048543689,
|
268 |
+
"acc_stderr": 0.03989139859531771,
|
269 |
+
"acc_norm": 0.7961165048543689,
|
270 |
+
"acc_norm_stderr": 0.03989139859531771
|
271 |
+
},
|
272 |
+
"harness|hendrycksTest-marketing|5": {
|
273 |
+
"acc": 0.8760683760683761,
|
274 |
+
"acc_stderr": 0.02158649400128137,
|
275 |
+
"acc_norm": 0.8760683760683761,
|
276 |
+
"acc_norm_stderr": 0.02158649400128137
|
277 |
+
},
|
278 |
+
"harness|hendrycksTest-medical_genetics|5": {
|
279 |
+
"acc": 0.73,
|
280 |
+
"acc_stderr": 0.0446196043338474,
|
281 |
+
"acc_norm": 0.73,
|
282 |
+
"acc_norm_stderr": 0.0446196043338474
|
283 |
+
},
|
284 |
+
"harness|hendrycksTest-miscellaneous|5": {
|
285 |
+
"acc": 0.8288633461047255,
|
286 |
+
"acc_stderr": 0.013468201614066307,
|
287 |
+
"acc_norm": 0.8288633461047255,
|
288 |
+
"acc_norm_stderr": 0.013468201614066307
|
289 |
+
},
|
290 |
+
"harness|hendrycksTest-moral_disputes|5": {
|
291 |
+
"acc": 0.7514450867052023,
|
292 |
+
"acc_stderr": 0.023267528432100174,
|
293 |
+
"acc_norm": 0.7514450867052023,
|
294 |
+
"acc_norm_stderr": 0.023267528432100174
|
295 |
+
},
|
296 |
+
"harness|hendrycksTest-moral_scenarios|5": {
|
297 |
+
"acc": 0.4480446927374302,
|
298 |
+
"acc_stderr": 0.016631976628930595,
|
299 |
+
"acc_norm": 0.4480446927374302,
|
300 |
+
"acc_norm_stderr": 0.016631976628930595
|
301 |
+
},
|
302 |
+
"harness|hendrycksTest-nutrition|5": {
|
303 |
+
"acc": 0.7320261437908496,
|
304 |
+
"acc_stderr": 0.025360603796242553,
|
305 |
+
"acc_norm": 0.7320261437908496,
|
306 |
+
"acc_norm_stderr": 0.025360603796242553
|
307 |
+
},
|
308 |
+
"harness|hendrycksTest-philosophy|5": {
|
309 |
+
"acc": 0.707395498392283,
|
310 |
+
"acc_stderr": 0.02583989833487798,
|
311 |
+
"acc_norm": 0.707395498392283,
|
312 |
+
"acc_norm_stderr": 0.02583989833487798
|
313 |
+
},
|
314 |
+
"harness|hendrycksTest-prehistory|5": {
|
315 |
+
"acc": 0.7530864197530864,
|
316 |
+
"acc_stderr": 0.023993501709042107,
|
317 |
+
"acc_norm": 0.7530864197530864,
|
318 |
+
"acc_norm_stderr": 0.023993501709042107
|
319 |
+
},
|
320 |
+
"harness|hendrycksTest-professional_accounting|5": {
|
321 |
+
"acc": 0.4787234042553192,
|
322 |
+
"acc_stderr": 0.029800481645628693,
|
323 |
+
"acc_norm": 0.4787234042553192,
|
324 |
+
"acc_norm_stderr": 0.029800481645628693
|
325 |
+
},
|
326 |
+
"harness|hendrycksTest-professional_law|5": {
|
327 |
+
"acc": 0.4791395045632334,
|
328 |
+
"acc_stderr": 0.012759117066518015,
|
329 |
+
"acc_norm": 0.4791395045632334,
|
330 |
+
"acc_norm_stderr": 0.012759117066518015
|
331 |
+
},
|
332 |
+
"harness|hendrycksTest-professional_medicine|5": {
|
333 |
+
"acc": 0.7058823529411765,
|
334 |
+
"acc_stderr": 0.02767846864214472,
|
335 |
+
"acc_norm": 0.7058823529411765,
|
336 |
+
"acc_norm_stderr": 0.02767846864214472
|
337 |
+
},
|
338 |
+
"harness|hendrycksTest-professional_psychology|5": {
|
339 |
+
"acc": 0.6862745098039216,
|
340 |
+
"acc_stderr": 0.018771683893528176,
|
341 |
+
"acc_norm": 0.6862745098039216,
|
342 |
+
"acc_norm_stderr": 0.018771683893528176
|
343 |
+
},
|
344 |
+
"harness|hendrycksTest-public_relations|5": {
|
345 |
+
"acc": 0.6818181818181818,
|
346 |
+
"acc_stderr": 0.04461272175910509,
|
347 |
+
"acc_norm": 0.6818181818181818,
|
348 |
+
"acc_norm_stderr": 0.04461272175910509
|
349 |
+
},
|
350 |
+
"harness|hendrycksTest-security_studies|5": {
|
351 |
+
"acc": 0.7346938775510204,
|
352 |
+
"acc_stderr": 0.028263889943784603,
|
353 |
+
"acc_norm": 0.7346938775510204,
|
354 |
+
"acc_norm_stderr": 0.028263889943784603
|
355 |
+
},
|
356 |
+
"harness|hendrycksTest-sociology|5": {
|
357 |
+
"acc": 0.835820895522388,
|
358 |
+
"acc_stderr": 0.026193923544454115,
|
359 |
+
"acc_norm": 0.835820895522388,
|
360 |
+
"acc_norm_stderr": 0.026193923544454115
|
361 |
+
},
|
362 |
+
"harness|hendrycksTest-us_foreign_policy|5": {
|
363 |
+
"acc": 0.85,
|
364 |
+
"acc_stderr": 0.03588702812826371,
|
365 |
+
"acc_norm": 0.85,
|
366 |
+
"acc_norm_stderr": 0.03588702812826371
|
367 |
+
},
|
368 |
+
"harness|hendrycksTest-virology|5": {
|
369 |
+
"acc": 0.5481927710843374,
|
370 |
+
"acc_stderr": 0.03874371556587953,
|
371 |
+
"acc_norm": 0.5481927710843374,
|
372 |
+
"acc_norm_stderr": 0.03874371556587953
|
373 |
+
},
|
374 |
+
"harness|hendrycksTest-world_religions|5": {
|
375 |
+
"acc": 0.8362573099415205,
|
376 |
+
"acc_stderr": 0.028380919596145866,
|
377 |
+
"acc_norm": 0.8362573099415205,
|
378 |
+
"acc_norm_stderr": 0.028380919596145866
|
379 |
+
},
|
380 |
+
"harness|truthfulqa:mc|0": {
|
381 |
+
"mc1": 0.4834761321909425,
|
382 |
+
"mc1_stderr": 0.017493940190057723,
|
383 |
+
"mc2": 0.6447306680251751,
|
384 |
+
"mc2_stderr": 0.015519245883344577
|
385 |
+
},
|
386 |
+
"harness|winogrande|5": {
|
387 |
+
"acc": 0.8366219415943172,
|
388 |
+
"acc_stderr": 0.010390695970273764
|
389 |
+
},
|
390 |
+
"harness|gsm8k|5": {
|
391 |
+
"acc": 0.7202426080363912,
|
392 |
+
"acc_stderr": 0.012364384016735319
|
393 |
+
}
|
394 |
+
}
|
395 |
+
|
396 |
+
```
|