metadata
language:
- en
license: mit
library_name: transformers
tags:
- axolotl
- finetune
- dpo
- microsoft
- phi
- pytorch
- phi-3
- nlp
- code
- chatml
base_model: microsoft/Phi-3-mini-4k-instruct
model_name: Phi-3-mini-4k-instruct-v0.1
pipeline_tag: text-generation
inference: false
model_creator: MaziyarPanahi
quantized_by: MaziyarPanahi
MaziyarPanahi/Phi-3-mini-4k-instruct-v0.1
This model is a fine-tune (DPO) of microsoft/Phi-3-mini-4k-instruct
model.
β‘ Quantized GGUF
coming soon
π Open LLM Leaderboard Evaluation Results
coming soon
Prompt Template
This model uses ChatML
prompt template:
<|im_start|>system
{System}
<|im_end|>
<|im_start|>user
{User}
<|im_end|>
<|im_start|>assistant
{Assistant}
How to use
You can use this model by using MaziyarPanahi/Phi-3-mini-4k-instruct-v0.1
as the model name in Hugging Face's
transformers library.
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
from transformers import pipeline
import torch
model_id = "MaziyarPanahi/Phi-3-mini-4k-instruct-v0.1"
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
# attn_implementation="flash_attention_2"
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True
)
streamer = TextStreamer(tokenizer)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|im_end|>"),
tokenizer.convert_tokens_to_ids("<|assistant|>"),
tokenizer.convert_tokens_to_ids("<|end|>")
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
"streamer": streamer,
"eos_token_id": terminators,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])