|
--- |
|
language: |
|
- en |
|
license: mit |
|
library_name: transformers |
|
tags: |
|
- axolotl |
|
- finetune |
|
- dpo |
|
- microsoft |
|
- phi |
|
- pytorch |
|
- phi-3 |
|
- nlp |
|
- code |
|
- chatml |
|
base_model: microsoft/Phi-3-mini-4k-instruct |
|
model_name: Phi-3-mini-4k-instruct-v0.1 |
|
pipeline_tag: text-generation |
|
inference: false |
|
model_creator: MaziyarPanahi |
|
quantized_by: MaziyarPanahi |
|
--- |
|
|
|
<img src="./phi-3-instruct.webp" alt="Phi-3 Logo" width="500" style="margin-left:'auto' margin-right:'auto' display:'block'"/> |
|
|
|
|
|
# MaziyarPanahi/Phi-3-mini-4k-instruct-v0.1 |
|
|
|
This model is a fine-tune (DPO) of `microsoft/Phi-3-mini-4k-instruct` model. |
|
|
|
# ⚡ Quantized GGUF |
|
|
|
coming soon |
|
|
|
# 🏆 [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
coming soon |
|
|
|
# Prompt Template |
|
|
|
This model uses `ChatML` prompt template: |
|
|
|
``` |
|
<|im_start|>system |
|
{System} |
|
<|im_end|> |
|
<|im_start|>user |
|
{User} |
|
<|im_end|> |
|
<|im_start|>assistant |
|
{Assistant} |
|
```` |
|
|
|
# How to use |
|
|
|
You can use this model by using `MaziyarPanahi/Phi-3-mini-4k-instruct-v0.1` as the model name in Hugging Face's |
|
transformers library. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
from transformers import pipeline |
|
import torch |
|
|
|
model_id = "MaziyarPanahi/Phi-3-mini-4k-instruct-v0.1" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto", |
|
trust_remote_code=True, |
|
# attn_implementation="flash_attention_2" |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, |
|
trust_remote_code=True |
|
) |
|
|
|
streamer = TextStreamer(tokenizer) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
|
|
# this should work perfectly for the model to stop generating |
|
terminators = [ |
|
tokenizer.eos_token_id, # this should be <|im_end|> |
|
tokenizer.convert_tokens_to_ids("<|assistant|>"), # sometimes model stops generating at <|assistant|> |
|
tokenizer.convert_tokens_to_ids("<|end|>") # sometimes model stops generating at <|end|> |
|
] |
|
|
|
pipe = pipeline( |
|
"text-generation", |
|
model=model, |
|
tokenizer=tokenizer, |
|
) |
|
|
|
generation_args = { |
|
"max_new_tokens": 500, |
|
"return_full_text": False, |
|
"temperature": 0.0, |
|
"do_sample": False, |
|
"streamer": streamer, |
|
"eos_token_id": terminators, |
|
} |
|
|
|
output = pipe(messages, **generation_args) |
|
print(output[0]['generated_text']) |
|
|
|
|
|
``` |