librarian-bot's picture
Librarian Bot: Add base_model metadata to model
dfbd66b verified
|
raw
history blame
1.67 kB
metadata
license: apache-2.0
tags:
  - merge
  - mergekit
  - mistral
  - 7b
  - lazymergekit
  - mistralai/Mistral-7B-Instruct-v0.2
  - NurtureAI/openchat_3.5-16k
base_model:
  - mistralai/Mistral-7B-Instruct-v0.2
  - NurtureAI/openchat_3.5-16k

openchat_3.5-16k-Mistral-7B-Instruct-v0.2-slerp

openchat_3.5-16k-Mistral-7B-Instruct-v0.2-slerp is a merge of the following models:

🧩 Configuration

slices:
  - sources:
      - model: mistralai/Mistral-7B-Instruct-v0.2
        layer_range: [0, 32]
      - model: NurtureAI/openchat_3.5-16k
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "MaziyarPanahi/openchat_3.5-16k-Mistral-7B-Instruct-v0.2-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])