multilingual_bert_AGRO

This model is a fine-tuned version of google-bert/bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.9701
  • Exact Match: 24.8571
  • F1 Score: 56.8185

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 3407
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss Exact Match F1 Score
6.2135 0.0053 1 6.2224 0.0 9.8241
6.2165 0.0107 2 6.1874 0.0 9.8716
6.1776 0.0160 3 6.1182 0.0 10.1769
6.1126 0.0214 4 6.0144 0.0 11.2194
6.0166 0.0267 5 5.8717 0.0752 12.2552
5.8816 0.0321 6 5.6741 2.2556 18.5657
5.7374 0.0374 7 5.4450 12.1805 37.6517
5.5652 0.0428 8 5.1969 23.8346 53.3283
5.2962 0.0481 9 4.9758 26.5414 56.9819
5.0538 0.0535 10 4.8192 22.1805 56.7266
5.0246 0.0588 11 4.6919 18.2707 56.2903
4.8358 0.0641 12 4.5354 18.2707 56.7852

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
28
Safetensors
Model size
177M params
Tensor type
F32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Mediocre-Judge/multilingual_bert_AGRO

Finetuned
(621)
this model