File size: 2,706 Bytes
4bb49ce 98c8fd0 4bb49ce 98c8fd0 4bb49ce 98c8fd0 49c1617 98c8fd0 0294d9f 98c8fd0 0294d9f 1563983 0294d9f 1563983 0294d9f 98c8fd0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model:
- Qwen/Qwen2.5-3B
datasets:
- MegaScience/MegaScience
language:
- en
license: apache-2.0
metrics:
- accuracy
pipeline_tag: text-generation
library_name: transformers
---
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://huggingface.co/papers/2507.16812)
This repository contains the `Qwen2.5-3B-MegaScience` model, one of the models trained as part of the MegaScience project.
For the official code, data processing pipeline, and evaluation system, please refer to the [MegaScience GitHub repository](https://github.com/GAIR-NLP/lm-open-science-evaluation).
## Qwen2.5-3B-MegaScience
### Usage
You can use this model with the Hugging Face `transformers` library:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "MegaScience/Qwen2.5-3B-MegaScience"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example text generation
prompt = "The capital of France is"
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt")
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=20)
print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0])
```
### Training Recipe
- **LR**: 5e-6
- **LR Schedule**: Cosine
- **Batch Size**: 512
- **Max Length**: 4,096
- **Warm Up Ratio**: 0.05
- **Epochs**: 3
### Evaluation Results
<div style="display: flex; justify-content: left; gap: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/abIVZ2XB9D-o-TCyvOkDE.png" alt="Data Pipeline" style="width:80%;">
</div>
<div style="display: flex; justify-content: left; gap: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/xFTJ7nevc3S4UYJxUS7ue.png" alt="Data Pipeline" style="width:80%;">
</div>
### More about MegaScience
<div style="display: flex; justify-content: left; gap: 20px;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/VogIpBbjfNxXFP9DfVMms.png" alt="Data Pipeline" style="width:100%;">
</div>
## Citation
Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you use our dataset or find our work useful, please cite
```
@article{fan2025megascience,
title={MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning},
author={Fan, Run-Ze and Wang, Zengzhi and Liu, Pengfei},
year={2025},
journal={arXiv preprint arXiv:2507.16812},
url={https://arxiv.org/abs/2507.16812}
}
``` |