Meggido's picture
Update README.md
a3aa7a8 verified
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- not-for-all-audiences
pipeline_tag: text-generation
base_model:
- fhai50032/RolePlayLake-7B-Toxic
---
# ⚡GGUF quant of : [RolePlayLake-7B-Toxic](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic).
>[!note]
> ➡️ **Quants :** Q6_K.
# Uploaded model
- **Developed by:** fhai50032
- **License:** apache-2.0
- **Finetuned from model :** fhai50032/RolePlayLake-7B
More Uncensored out of the gate without any prompting;
trained on [Undi95/toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt) and other unalignment dataset
Trained on P100 GPU on Kaggle for 1h(approx..)
**QLoRA (4bit)**
Params to replicate training
Peft Config
```
r = 64,
target_modules = ['v_proj', 'down_proj', 'up_proj',
'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
lora_alpha = 128, #weight_scaling
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = True,#False,#
random_state = 3407,
max_seq_length = 1024,
```
Training args
```
per_device_train_batch_size = 6,
gradient_accumulation_steps = 6,
gradient_checkpointing=True,
# warmup_ratio = 0.1,
warmup_steps=4,
save_steps=150,
dataloader_num_workers = 2,
learning_rate = 2e-5,
fp16 = True,
logging_steps = 1,
num_train_epochs=2, ## use this for epoch
# max_steps=9, ## max steps over ride epochs
optim = "adamw_8bit",
weight_decay = 1e-3,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
packing=False,
# neftune_noise_alpha=10
```
Loss
`0.6182`
Training Results
[<img src="https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png" width="400"/>](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/train_loss_RPLake-toxic.png)
[Wandb](https://huggingface.co/fhai50032/RolePlayLake-7B-Toxic/resolve/main/Wandb-RPLake.csv)
**Interernce Code**
-Supports Alpaca , ChatML and maybe others too
```python
pip install -qU transformers accelerate bitsandbytes
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
model_name = "fhai50032/RolePlayLake-7B-Toxic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True,
# use accelerate to spread model across multiple GPUs
device_map="auto",
torch_dtype=torch.float16,
)
model.config.use_cache = False
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")
messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fhai50032__RolePlayLake-7B-Toxic)
| Metric |Value|
|---------------------------------|----:|
|Avg. |70.00|
|AI2 Reasoning Challenge (25-Shot)|66.98|
|HellaSwag (10-Shot) |84.86|
|MMLU (5-Shot) |63.79|
|TruthfulQA (0-shot) |56.54|
|Winogrande (5-shot) |82.24|
|GSM8k (5-shot) |65.58|