File size: 3,863 Bytes
dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e 6877dbc dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e 6c37025 dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc 0337e0e dd9b9fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
language: sv-SE
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: wav2vec2-large-xlsr-53-Swedish by Mehdi Hosseini Moghadam
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice sv-SE
type: common_voice
args: sv-SE
metrics:
- name: Test WER
type: wer
value: 41.388337
---
# wav2vec2-large-xlsr-53-Swedish
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Swedish using the [Common Voice](https://huggingface.co/datasets/common_voice)
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "sv-SE", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
```
## Evaluation
The model can be evaluated as follows on the Swedish test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "sv-SE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
model = Wav2Vec2ForCTC.from_pretrained("MehdiHosseiniMoghadam/wav2vec2-large-xlsr-53-Swedish")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 41.388337 %
## Training
The Common Voice `train`, `validation` datasets were used for training. |