Melanit's picture
Add Examples to README
06dfab2
---
library_name: keras
tags:
- keras-dreambooth
- scifi
license: cc-by-nc-4.0
---
## Model description
This Stable-Diffusion Model has been fine-tuned on images of the Star Trek Voyager Spaceship.
Here are some examples using the following Hyperparameters:
Prompt: photo of voyager spaceship in space, high quality, 8k
Negative Prompt: bad, ugly, malformed, deformed, out of frame, blurry, cropped, noisy
Denoising Steps: 50
Guidance Scale: 7.5
![Voyager Example](Voyager_examples/tmp3wac86_s.png)
![Voyager Example](Voyager_examples/tmp642otp9s.png)
![Voyager Example](Voyager_examples/tmprhvgzfjk.png)
## Intended uses & limitations
Anyone may use this model for non-commercial usecases under the Linked License, as long as Paragraph 5 of the [Open RAIL-M License](https://raw.githubusercontent.com/CompVis/stable-diffusion/main/LICENSE) are respected as well. The original Model adheres under Open RAIL-M.
It was made solely as an experiment for keras_cv Dreambooth Training.
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
| Hyperparameters | Value |
| :-- | :-- |
| inner_optimizer.class_name | Custom>RMSprop |
| inner_optimizer.config.name | RMSprop |
| inner_optimizer.config.weight_decay | None |
| inner_optimizer.config.clipnorm | None |
| inner_optimizer.config.global_clipnorm | None |
| inner_optimizer.config.clipvalue | None |
| inner_optimizer.config.use_ema | False |
| inner_optimizer.config.ema_momentum | 0.99 |
| inner_optimizer.config.ema_overwrite_frequency | 100 |
| inner_optimizer.config.jit_compile | True |
| inner_optimizer.config.is_legacy_optimizer | False |
| inner_optimizer.config.learning_rate | 0.0010000000474974513 |
| inner_optimizer.config.rho | 0.9 |
| inner_optimizer.config.momentum | 0.0 |
| inner_optimizer.config.epsilon | 1e-07 |
| inner_optimizer.config.centered | False |
| dynamic | True |
| initial_scale | 32768.0 |
| dynamic_growth_steps | 2000 |
| training_precision | mixed_float16 |