Meli101's picture
Training in progress epoch 2
0007d3d
---
license: mit
base_model: microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL
tags:
- generated_from_keras_callback
model-index:
- name: Meli101/krissbert-sentence-classifier
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Meli101/krissbert-sentence-classifier
This model is a fine-tuned version of [microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL](https://huggingface.co/microsoft/BiomedNLP-KRISSBERT-PubMed-UMLS-EL) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.1489
- Validation Loss: 0.2873
- Train Precision: 0.9170
- Train Recall: 0.9151
- Train Accuracy: 0.9154
- Train F1: 0.9151
- Epoch: 2
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1535, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Precision | Train Recall | Train Accuracy | Train F1 | Epoch |
|:----------:|:---------------:|:---------------:|:------------:|:--------------:|:--------:|:-----:|
| 0.5011 | 0.3717 | 0.8777 | 0.8711 | 0.8723 | 0.8724 | 0 |
| 0.2382 | 0.3152 | 0.9012 | 0.8984 | 0.8991 | 0.8991 | 1 |
| 0.1489 | 0.2873 | 0.9170 | 0.9151 | 0.9154 | 0.9151 | 2 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.17.1
- Tokenizers 0.15.2