Deepfake-audio-detection

This model is a fine-tuned version of motheecreator/Deepfake-audio-detection on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0192
  • Accuracy: 0.9964
  • Precision: 0.9944
  • Recall: 0.9990
  • F1: 0.9967
  • Auc Roc: 1.0000
  • Confusion Matrix: [[4974, 34], [6, 6033]]
  • Classification Report: {'0': {'precision': 0.9987951807228915, 'recall': 0.9932108626198083, 'f1-score': 0.9959951942330797, 'support': 5008}, '1': {'precision': 0.9943959123125103, 'recall': 0.9990064580228515, 'f1-score': 0.9966958532958864, 'support': 6039}, 'accuracy': 0.9963791074499864, 'macro avg': {'precision': 0.996595546517701, 'recall': 0.9961086603213298, 'f1-score': 0.996345523764483, 'support': 11047}, 'weighted avg': {'precision': 0.9963902579447351, 'recall': 0.9963791074499864, 'f1-score': 0.9963782194960733, 'support': 11047}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auc Roc Confusion Matrix Classification Report
0.1006 0.3621 1000 0.1897 0.9651 0.9424 0.9972 0.9690 0.9989 [[4640, 368], [17, 6022]] {'0': {'precision': 0.9963495812754992, 'recall': 0.9265175718849841, 'f1-score': 0.9601655457837558, 'support': 5008}, '1': {'precision': 0.9424100156494523, 'recall': 0.9971849643980791, 'f1-score': 0.969024056641725, 'support': 6039}, 'accuracy': 0.9651489092061193, 'macro avg': {'precision': 0.9693797984624757, 'recall': 0.9618512681415317, 'f1-score': 0.9645948012127403, 'support': 11047}, 'weighted avg': {'precision': 0.9668627489395077, 'recall': 0.9651489092061193, 'f1-score': 0.9650081770023017, 'support': 11047}}
0.07 0.7241 2000 0.0333 0.9916 0.9914 0.9932 0.9923 0.9997 [[4956, 52], [41, 5998]] {'0': {'precision': 0.9917950770462277, 'recall': 0.9896166134185304, 'f1-score': 0.9907046476761618, 'support': 5008}, '1': {'precision': 0.991404958677686, 'recall': 0.993210796489485, 'f1-score': 0.9923070560013236, 'support': 6039}, 'accuracy': 0.9915814248212185, 'macro avg': {'precision': 0.9916000178619568, 'recall': 0.9914137049540077, 'f1-score': 0.9915058518387427, 'support': 11047}, 'weighted avg': {'precision': 0.9915818132798093, 'recall': 0.9915814248212185, 'f1-score': 0.9915806270258181, 'support': 11047}}
0.016 1.0862 3000 0.1018 0.9841 0.9727 0.9988 0.9856 0.9998 [[4839, 169], [7, 6032]] {'0': {'precision': 0.9985555096987206, 'recall': 0.9662539936102237, 'f1-score': 0.9821392327988635, 'support': 5008}, '1': {'precision': 0.9727463312368972, 'recall': 0.9988408676933267, 'f1-score': 0.9856209150326798, 'support': 6039}, 'accuracy': 0.9840680727799402, 'macro avg': {'precision': 0.985650920467809, 'recall': 0.9825474306517752, 'f1-score': 0.9838800739157716, 'support': 11047}, 'weighted avg': {'precision': 0.9844465544410985, 'recall': 0.9840680727799402, 'f1-score': 0.9840425440154849, 'support': 11047}}
0.0209 1.4482 4000 0.0212 0.9957 0.9950 0.9972 0.9961 0.9999 [[4978, 30], [17, 6022]] {'0': {'precision': 0.9965965965965966, 'recall': 0.9940095846645367, 'f1-score': 0.9953014095771269, 'support': 5008}, '1': {'precision': 0.9950429610046265, 'recall': 0.9971849643980791, 'f1-score': 0.9961128111818707, 'support': 6039}, 'accuracy': 0.995745451253734, 'macro avg': {'precision': 0.9958197788006116, 'recall': 0.995597274531308, 'f1-score': 0.9957071103794988, 'support': 11047}, 'weighted avg': {'precision': 0.9957472795566846, 'recall': 0.995745451253734, 'f1-score': 0.9957449738290548, 'support': 11047}}
0.0233 1.8103 5000 0.0192 0.9964 0.9944 0.9990 0.9967 1.0000 [[4974, 34], [6, 6033]] {'0': {'precision': 0.9987951807228915, 'recall': 0.9932108626198083, 'f1-score': 0.9959951942330797, 'support': 5008}, '1': {'precision': 0.9943959123125103, 'recall': 0.9990064580228515, 'f1-score': 0.9966958532958864, 'support': 6039}, 'accuracy': 0.9963791074499864, 'macro avg': {'precision': 0.996595546517701, 'recall': 0.9961086603213298, 'f1-score': 0.996345523764483, 'support': 11047}, 'weighted avg': {'precision': 0.9963902579447351, 'recall': 0.9963791074499864, 'f1-score': 0.9963782194960733, 'support': 11047}}

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.1.2
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
60
Safetensors
Model size
94.6M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for MelodyMachine/Deepfake-audio-detection

Space using MelodyMachine/Deepfake-audio-detection 1

Evaluation results