Deepfake-audio-detection
This model is a fine-tuned version of motheecreator/Deepfake-audio-detection on the audiofolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.0192
- Accuracy: 0.9964
- Precision: 0.9944
- Recall: 0.9990
- F1: 0.9967
- Auc Roc: 1.0000
- Confusion Matrix: [[4974, 34], [6, 6033]]
- Classification Report: {'0': {'precision': 0.9987951807228915, 'recall': 0.9932108626198083, 'f1-score': 0.9959951942330797, 'support': 5008}, '1': {'precision': 0.9943959123125103, 'recall': 0.9990064580228515, 'f1-score': 0.9966958532958864, 'support': 6039}, 'accuracy': 0.9963791074499864, 'macro avg': {'precision': 0.996595546517701, 'recall': 0.9961086603213298, 'f1-score': 0.996345523764483, 'support': 11047}, 'weighted avg': {'precision': 0.9963902579447351, 'recall': 0.9963791074499864, 'f1-score': 0.9963782194960733, 'support': 11047}}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auc Roc | Confusion Matrix | Classification Report |
---|---|---|---|---|---|---|---|---|---|---|
0.1006 | 0.3621 | 1000 | 0.1897 | 0.9651 | 0.9424 | 0.9972 | 0.9690 | 0.9989 | [[4640, 368], [17, 6022]] | {'0': {'precision': 0.9963495812754992, 'recall': 0.9265175718849841, 'f1-score': 0.9601655457837558, 'support': 5008}, '1': {'precision': 0.9424100156494523, 'recall': 0.9971849643980791, 'f1-score': 0.969024056641725, 'support': 6039}, 'accuracy': 0.9651489092061193, 'macro avg': {'precision': 0.9693797984624757, 'recall': 0.9618512681415317, 'f1-score': 0.9645948012127403, 'support': 11047}, 'weighted avg': {'precision': 0.9668627489395077, 'recall': 0.9651489092061193, 'f1-score': 0.9650081770023017, 'support': 11047}} |
0.07 | 0.7241 | 2000 | 0.0333 | 0.9916 | 0.9914 | 0.9932 | 0.9923 | 0.9997 | [[4956, 52], [41, 5998]] | {'0': {'precision': 0.9917950770462277, 'recall': 0.9896166134185304, 'f1-score': 0.9907046476761618, 'support': 5008}, '1': {'precision': 0.991404958677686, 'recall': 0.993210796489485, 'f1-score': 0.9923070560013236, 'support': 6039}, 'accuracy': 0.9915814248212185, 'macro avg': {'precision': 0.9916000178619568, 'recall': 0.9914137049540077, 'f1-score': 0.9915058518387427, 'support': 11047}, 'weighted avg': {'precision': 0.9915818132798093, 'recall': 0.9915814248212185, 'f1-score': 0.9915806270258181, 'support': 11047}} |
0.016 | 1.0862 | 3000 | 0.1018 | 0.9841 | 0.9727 | 0.9988 | 0.9856 | 0.9998 | [[4839, 169], [7, 6032]] | {'0': {'precision': 0.9985555096987206, 'recall': 0.9662539936102237, 'f1-score': 0.9821392327988635, 'support': 5008}, '1': {'precision': 0.9727463312368972, 'recall': 0.9988408676933267, 'f1-score': 0.9856209150326798, 'support': 6039}, 'accuracy': 0.9840680727799402, 'macro avg': {'precision': 0.985650920467809, 'recall': 0.9825474306517752, 'f1-score': 0.9838800739157716, 'support': 11047}, 'weighted avg': {'precision': 0.9844465544410985, 'recall': 0.9840680727799402, 'f1-score': 0.9840425440154849, 'support': 11047}} |
0.0209 | 1.4482 | 4000 | 0.0212 | 0.9957 | 0.9950 | 0.9972 | 0.9961 | 0.9999 | [[4978, 30], [17, 6022]] | {'0': {'precision': 0.9965965965965966, 'recall': 0.9940095846645367, 'f1-score': 0.9953014095771269, 'support': 5008}, '1': {'precision': 0.9950429610046265, 'recall': 0.9971849643980791, 'f1-score': 0.9961128111818707, 'support': 6039}, 'accuracy': 0.995745451253734, 'macro avg': {'precision': 0.9958197788006116, 'recall': 0.995597274531308, 'f1-score': 0.9957071103794988, 'support': 11047}, 'weighted avg': {'precision': 0.9957472795566846, 'recall': 0.995745451253734, 'f1-score': 0.9957449738290548, 'support': 11047}} |
0.0233 | 1.8103 | 5000 | 0.0192 | 0.9964 | 0.9944 | 0.9990 | 0.9967 | 1.0000 | [[4974, 34], [6, 6033]] | {'0': {'precision': 0.9987951807228915, 'recall': 0.9932108626198083, 'f1-score': 0.9959951942330797, 'support': 5008}, '1': {'precision': 0.9943959123125103, 'recall': 0.9990064580228515, 'f1-score': 0.9966958532958864, 'support': 6039}, 'accuracy': 0.9963791074499864, 'macro avg': {'precision': 0.996595546517701, 'recall': 0.9961086603213298, 'f1-score': 0.996345523764483, 'support': 11047}, 'weighted avg': {'precision': 0.9963902579447351, 'recall': 0.9963791074499864, 'f1-score': 0.9963782194960733, 'support': 11047}} |
Framework versions
- Transformers 4.41.1
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 60
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for MelodyMachine/Deepfake-audio-detection
Base model
facebook/wav2vec2-base
Finetuned
motheecreator/wav2vec2-base-finetuned
Finetuned
motheecreator/Deepfake-audio-detection
Space using MelodyMachine/Deepfake-audio-detection 1
Evaluation results
- Accuracy on audiofolderself-reported0.996
- Precision on audiofolderself-reported0.994
- Recall on audiofolderself-reported0.999
- F1 on audiofolderself-reported0.997