Armenian-Text-Embeddings-1
Model Details
- Model Name: Armenian-Text-Embeddings-1
- Model Type: Text Embeddings for Armenian Language
- Base Model: intfloat/multilingual-e5-base
- Version: 1.0.0
- License: Apache 2.0
- Last Updated: November 2024
- Model Architecture: Transformer-based embeddings model
- Input: Armenian text
- Output: Dense vector embeddings
Quick Start
import torch.nn.functional as F
from torch import Tensor
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained('Metric-AI/armenian-text-embeddings-1')
model = AutoModel.from_pretrained('Metric-AI/armenian-text-embeddings-1')
def average_pool(last_hidden_states: Tensor,
attention_mask: Tensor) -> Tensor:
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
# Each input text should start with "query: " or "passage: ", even for non-English texts.
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = [
'query: Ինչպե՞ս պատրաստել տոլմա', # How to make tolma
'query: Քանի՞ գրամ սպիտակուց է հարկավոր օրական', # How many grams of protein needed daily
"""passage: Տոլմայի բաղադրատոմս՝
Բաղադրիչներ՝
- 500գ աղացած միս
- 1 բաժակ բրինձ
- Խաղողի տերևներ
- 2 գլուխ սոխ
- Համեմունքներ՝ աղ, սև պղպեղ, քարի
Պատրաստման եղանակը՝
1. Միսը խառնել բրնձի, մանր կտրատած սոխի և համեմունքների հետ
2. Խաղողի տերևները լվանալ և թողնել տաք ջրի մեջ 10 րոպե
3. Լցոնել տերևները և դասավորել կաթսայի մեջ
4. Եփել դանդաղ կրակի վրա 45-60 րոպե""", # Detailed tolma recipe
"""passage: Սպիտակուցի օրական չափաբաժինը կախված է մարդու քաշից, սեռից և ֆիզիկական ակտիվությունից:
Միջին հաշվով, կանանց համար խորհուրդ է տրվում 46-50 գրամ սպիտակուց օրական:
Մարզիկների համար այս թիվը կարող է հասնել մինչև 1.6-2 գրամ մարմնի քաշի յուրաքանչյուր կիլոգրամի համար:
Հղիների համար պահանջվում է լրացուցիչ 25 գրամ սպիտակուց:
Սպիտակուցի հարուստ աղբյուրներ են՝
- Հավի միս (31գ/100գ)
- Ձու (13գ/100գ)
- Ոսպ (25գ/100գ)
- Մածուն (3.5գ/100գ)"""] # Detailed protein intake advice
# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
# [[83.96063232421875, 30.283924102783203], [32.504661560058594, 82.4246826171875]]
Support for Sentence Transformers
Below is an example for usage with sentence_transformers.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('Metric-AI/armenian-text-embeddings-1')
embeddings = model.encode(input_texts, normalize_embeddings=True)
Intended Use
Primary Intended Uses
- Retrieval-augmented generation (RAG)
- Semantic search in Armenian
- Document similarity computation
- Cross-lingual text understanding
- Text classification tasks
- Information retrieval
Training Data
Dataset Details
- Source: Reddit dataset with English-Armenian translations
- Size: 1.08M pairs of rows
- Content Type: Title and body text pairs
- Token Statistics:
- Training Set:
- Translated Title Tokens: 23,921,393
- Translated Body Tokens: 194,200,654
- Test Set:
- Translated Title Tokens: 242,443
- Translated Body Tokens: 1,946,164
- Training Set:
- Split Ratio: 99% train, 1% test
Training Procedure
Training Details
- Weight Averaging:
- Base model (multilingual-e5-base): 0.6 weight
- Fine-tuned model: 0.4 weight
- Training Duration: 2 days
- Hardware: 4 x NVIDIA A100 40GB GPUs
- Training Parameters:
- Epochs: 5
- Batch Size: 256 per GPU, (256*4 in total)
- Learning Rate: 5e-5
- Weight Decay: 0.01
- Warmup Steps: 1000
- Maximum Sequence Length: 128 tokens
- FP16 Training: Enabled
- Gradient Clipping: 1.0
Optimization Configuration
- Framework: DeepSpeed Stage 2
- Optimizer: AdamW with auto weight decay
- Mixed Precision: FP16 with dynamic loss scaling
- ZeRO Optimization: Stage 2 with:
- Allgather partitions
- Overlap communications
- Contiguous gradients
- Additional Features:
- Gradient checkpointing
- Tensor parallelism (size: 2)
Performance and Limitations
Capabilities
- Effective for semantic similarity tasks in Armenian
- Suitable for document classification and clustering
Limitations
- Performance may vary on domain-specific terminology
- May not capture Armenian-specific cultural contexts effectively
- Limited by the quality of training data translations
Known Biases
- May exhibit biases present in Reddit content
Environmental Impact
- Training Hardware: 4 x NVIDIA A100 40GB
- Training Duration: 48 hours
- Estimated Energy Consumption: 384 kWh (estimated based on A100 power consumption)
Ethical Considerations
- Data Privacy: Training data from public Reddit content
- Potential Misuse: Could be misused for content manipulation or spam
- Bias: May perpetuate social biases present in Reddit content
- Recommendations:
- Monitor system outputs for harmful content
- Implement content filtering for production use
- Regular bias assessment recommended
Technical Specifications
- Model Size: ~278M parameters (based on e5-base)
- Embedding Dimension: 384
- Max Sequence Length: 128 tokens
- Framework Compatibility:
- PyTorch
- Hugging Face Transformers
- DeepSpeed
Citation
@misc{armenian-text-embeddings-1,
author = {Spartak Bughdaryan, Zaruhi Navasardyan, Bagrat Minasyan, Hrant Davtyan},
title = {Armenian-Text-Embeddings-1: Enhanced Armenian Language Embeddings},
year = {2024},
howpublished = {\url{https://metric.am/blog/announcing-armenian-text-embeddings/}}
}
Additional Information
Base Model References
- multilingual-e5-base: https://huggingface.co/intfloat/multilingual-e5-base
Acknowledgments
- intfloat for the original multilingual-e5-base model
- Reddit community for the source content
- DeepSpeed team for optimization toolkit
Version History
- 1.0.0 (November 2024): Initial release
- Downloads last month
- 2,414
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for Metric-AI/armenian-text-embeddings-1
Base model
intfloat/multilingual-e5-base