bugdaryan commited on
Commit
7fea118
·
verified ·
1 Parent(s): e8d97e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +197 -191
README.md CHANGED
@@ -1,199 +1,205 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
140
 
141
  ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ language:
4
+ - en
5
+ - hy
6
+ base_model:
7
+ - intfloat/multilingual-e5-base
8
  ---
9
 
10
+ # Armenian-Text-Embeddings-1
 
 
 
 
11
 
12
  ## Model Details
13
+ - **Model Name**: Armenian-Text-Embeddings-1
14
+ - **Model Type**: Text Embeddings for Armenian Language
15
+ - **Base Model**: intfloat/multilingual-e5-base
16
+ - **Version**: 1.0.0
17
+ - **License**: Apache 2.0
18
+ - **Last Updated**: November 2024
19
+ - **Model Architecture**: Transformer-based embeddings model
20
+ - **Input**: Armenian text
21
+ - **Output**: Dense vector embeddings
22
+
23
+ ## Quick Start
24
+ ```python
25
+ import torch.nn.functional as F
26
+
27
+ from torch import Tensor
28
+ from transformers import AutoTokenizer, AutoModel
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained('Metric-AI/armenian-text-embeddings-1')
31
+ model = AutoModel.from_pretrained('Metric-AI/armenian-text-embeddings-1')
32
+
33
+
34
+ def average_pool(last_hidden_states: Tensor,
35
+ attention_mask: Tensor) -> Tensor:
36
+ last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
37
+ return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
38
+
39
+
40
+ # Each input text should start with "query: " or "passage: ", even for non-English texts.
41
+ # For tasks other than retrieval, you can simply use the "query: " prefix.
42
+ input_texts = [
43
+ 'query: Ինչպե՞ս պատրաստել տոլմա', # How to make tolma
44
+ 'query: Քանի՞ գրամ սպիտակուց է հարկավոր օրական', # How many grams of protein needed daily
45
+
46
+ """passage: Տոլմայի բաղադրատոմս՝
47
+ Բաղադրիչներ՝
48
+ - 500գ աղացած միս
49
+ - 1 բաժակ բրինձ
50
+ - Խաղողի տերևներ
51
+ - 2 գլուխ սոխ
52
+ - Համեմունքներ՝ աղ, սև պղպեղ, քարի
53
+
54
+ Պատրաստման եղանակը՝
55
+ 1. Միսը խառնել բրնձի, մանր կտրատած սոխի և համեմունքների հետ
56
+ 2. Խաղողի տերևները լվանալ և թողնել տաք ջրի մեջ 10 րոպե
57
+ 3. Լցոնել տերևները և դասավորել կաթսայի մեջ
58
+ 4. Եփել դանդաղ կրակի վրա 45-60 րոպե""", # Detailed tolma recipe
59
+
60
+ """passage: Սպիտակուցի օրական չափաբաժինը կախված է մարդու քաշից, սեռից և ֆիզիկական ակտիվությունից:
61
+ Միջին հաշվով, կանանց համար խորհուրդ է տրվում 46-50 գրամ սպիտակուց օրական:
62
+ Մարզիկների համար այս թիվը կարող է հասնել մինչև 1.6-2 գրամ մարմնի քաշի յուրաքանչյուր կիլոգրամի համար:
63
+ Հղիների համար պահանջվում է լրացուցիչ 25 գրամ սպիտակուց:
64
+
65
+ Սպիտակուցի հարուստ աղբյուրներ են՝
66
+ - Հավի միս (31գ/100գ)
67
+ - Ձու (13գ/100գ)
68
+ - Ոսպ (25գ/100գ)
69
+ - Մածուն (3.5գ/100գ)"""] # Detailed protein intake advice
70
+
71
+ # Tokenize the input texts
72
+ batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
73
+ outputs = model(**batch_dict)
74
+ embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
75
+
76
+ # normalize embeddings
77
+ embeddings = F.normalize(embeddings, p=2, dim=1)
78
+ scores = (embeddings[:2] @ embeddings[2:].T) * 100
79
+ print(scores.tolist())
80
+
81
+ # [[83.96063232421875, 30.283924102783203], [32.504661560058594, 82.4246826171875]]
82
+ ```
83
+
84
+ ## Intended Use
85
+ ### Primary Intended Uses
86
+ - Semantic search in Armenian
87
+ - Document similarity computation
88
+ - Cross-lingual text understanding
89
+ - Text classification tasks
90
+ - Information retrieval
91
+
92
+ ## Training Data
93
+ ### Dataset Details
94
+ - **Source**: Reddit dataset with English-Armenian translations
95
+ - **Size**: 1.08M pairs of rows
96
+ - **Content Type**: Title and body text pairs
97
+ - **Token Statistics**:
98
+ - Training Set:
99
+ - Translated Title Tokens: 23,921,393
100
+ - Translated Body Tokens: 194,200,654
101
+ - Test Set:
102
+ - Translated Title Tokens: 242,443
103
+ - Translated Body Tokens: 1,946,164
104
+ - **Split Ratio**: 99% train, 1% test
105
+
106
+ ## Training Procedure
107
+ ### Training Details
108
+ - **Weight Averaging**:
109
+ - Base model (multilingual-e5-base): 0.6 weight
110
+ - Fine-tuned model: 0.4 weight
111
+ - **Training Duration**: 2 days
112
+ - **Hardware**: 4 x NVIDIA A100 40GB GPUs
113
+ - **Training Parameters**:
114
+ - Epochs: 5
115
+ - Batch Size: 256 per GPU, (256*4 in total)
116
+ - Learning Rate: 5e-5
117
+ - Weight Decay: 0.01
118
+ - Warmup Steps: 1000
119
+ - Maximum Sequence Length: 128 tokens
120
+ - FP16 Training: Enabled
121
+ - Gradient Clipping: 1.0
122
+
123
+ ### Optimization Configuration
124
+ - **Framework**: DeepSpeed Stage 2
125
+ - **Optimizer**: AdamW with auto weight decay
126
+ - **Mixed Precision**: FP16 with dynamic loss scaling
127
+ - **ZeRO Optimization**: Stage 2 with:
128
+ - Allgather partitions
129
+ - Overlap communications
130
+ - Contiguous gradients
131
+ - **Additional Features**:
132
+ - Gradient checkpointing
133
+ - Tensor parallelism (size: 2)
134
+
135
+ ## Performance and Limitations
136
+ ### Capabilities
137
+ - Effective for semantic similarity tasks in Armenian
138
+ - Suitable for document classification and clustering
139
+
140
+ ### Limitations
141
+ - Performance may vary on domain-specific terminology
142
+ - May not capture Armenian-specific cultural contexts effectively
143
+ - Limited by the quality of training data translations
144
+
145
+ ### Known Biases
146
+ - May exhibit biases present in Reddit content
147
+
148
+ ## Computational Requirements
149
+ ### Training Infrastructure
150
+ - 4 x NVIDIA A100 40GB GPUs
151
+ - DeepSpeed-compatible setup
152
+ - Minimum 128GB System RAM
153
+
154
+ ### Inference Requirements
155
+ - Minimum: 8GB GPU RAM
156
+ - Recommended: 16GB GPU RAM
157
+ - CPU Inference: Possible but significantly slower
158
+ - RAM: 16GB minimum
159
 
160
  ## Environmental Impact
161
+ - **Training Hardware**: 4 x NVIDIA A100 40GB
162
+ - **Training Duration**: 48 hours
163
+ - **Estimated Energy Consumption**: 384 kWh (estimated based on A100 power consumption)
164
+
165
+ ## Ethical Considerations
166
+ - **Data Privacy**: Training data from public Reddit content
167
+ - **Potential Misuse**: Could be misused for content manipulation or spam
168
+ - **Bias**: May perpetuate social biases present in Reddit content
169
+ - **Recommendations**:
170
+ - Monitor system outputs for harmful content
171
+ - Implement content filtering for production use
172
+ - Regular bias assessment recommended
173
+
174
+ ## Technical Specifications
175
+ - **Model Size**: ~278M parameters (based on e5-base)
176
+ - **Embedding Dimension**: 384
177
+ - **Max Sequence Length**: 128 tokens
178
+ - **Framework Compatibility**:
179
+ - PyTorch
180
+ - Hugging Face Transformers
181
+ - DeepSpeed
182
+
183
+ ## Citation
184
+ ```bibtex
185
+ @misc{armenian-text-embeddings-2024,
186
+ author = {[Your Organization]},
187
+ title = {Armenian-Text-Embeddings-1: Enhanced Armenian Language Embeddings},
188
+ year = {2024},
189
+ publisher = {GitHub},
190
+ journal = {GitHub repository},
191
+ howpublished = {\url{[repository-url]}}
192
+ }
193
+ ```
194
+
195
+ ## Additional Information
196
+ ### Base Model References
197
+ - multilingual-e5-base: [https://huggingface.co/intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base)
198
+
199
+ ### Acknowledgments
200
+ - intfloat for the original multilingual-e5-base model
201
+ - Reddit community for the source content
202
+ - DeepSpeed team for optimization toolkit
203
+
204
+ ## Version History
205
+ - 1.0.0 (November 2024): Initial release