Dialogue_dfm / README.md
yemen2016's picture
Upload tokenizer
15bcf19 verified
|
raw
history blame
3.44 kB
---
base_model: KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align
library_name: transformers
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: dfm
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# dfm
This model is a fine-tuned version of [KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align](https://huggingface.co/KennethEnevoldsen/dfm-sentence-encoder-large-exp2-no-lang-align) on the None dataset.
It achieves the following results on the evaluation set:
- Accuracy: 0.9421
- Precision: 0.9470
- Recall: 0.9421
- F1: 0.9422
- Loss: 0.5839
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Accuracy | Precision | Recall | F1 | Validation Loss |
|:-------------:|:-------:|:----:|:--------:|:---------:|:------:|:------:|:---------------:|
| No log | 0.9412 | 8 | 0.8711 | 0.8341 | 0.8711 | 0.8507 | 0.4719 |
| No log | 2.0 | 17 | 0.9237 | 0.9242 | 0.9237 | 0.9217 | 0.3301 |
| No log | 2.9412 | 25 | 0.9225 | 0.9301 | 0.9225 | 0.9232 | 0.3470 |
| No log | 4.0 | 34 | 0.9317 | 0.9315 | 0.9317 | 0.9299 | 0.2004 |
| No log | 4.9412 | 42 | 0.9379 | 0.9443 | 0.9379 | 0.9383 | 0.4529 |
| No log | 6.0 | 51 | 0.9394 | 0.9454 | 0.9394 | 0.9399 | 0.4719 |
| No log | 6.9412 | 59 | 0.9425 | 0.9458 | 0.9425 | 0.9419 | 0.4498 |
| No log | 8.0 | 68 | 0.9421 | 0.9471 | 0.9421 | 0.9423 | 0.4921 |
| No log | 8.9412 | 76 | 0.9440 | 0.9486 | 0.9440 | 0.9440 | 0.5242 |
| No log | 10.0 | 85 | 0.9444 | 0.9488 | 0.9444 | 0.9443 | 0.5476 |
| No log | 10.9412 | 93 | 0.9421 | 0.9471 | 0.9421 | 0.9422 | 0.5733 |
| No log | 12.0 | 102 | 0.9432 | 0.9479 | 0.9432 | 0.9433 | 0.5725 |
| No log | 12.9412 | 110 | 0.9432 | 0.9478 | 0.9432 | 0.9432 | 0.5677 |
| No log | 14.0 | 119 | 0.9432 | 0.9478 | 0.9432 | 0.9432 | 0.5714 |
| No log | 14.9412 | 127 | 0.9425 | 0.9473 | 0.9425 | 0.9425 | 0.5802 |
| No log | 16.0 | 136 | 0.9417 | 0.9468 | 0.9417 | 0.9418 | 0.5838 |
| No log | 16.9412 | 144 | 0.9421 | 0.9470 | 0.9421 | 0.9422 | 0.5857 |
| No log | 18.0 | 153 | 0.9421 | 0.9470 | 0.9421 | 0.9422 | 0.5840 |
| No log | 18.8235 | 160 | 0.9421 | 0.9470 | 0.9421 | 0.9422 | 0.5839 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1