Miamiahong's picture
End of training
ddeb339 verified
metadata
license: apache-2.0
base_model: distilbert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: jpmodel_remote-work_distilbert-base-uncased_0517
    results: []

jpmodel_remote-work_distilbert-base-uncased_0517

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4293
  • Accuracy: {'accuracy': 0.9476614699331849}
  • F1: {'f1': 0.9316670582946814}
  • Precision: {'precision': 0.9211843955719234}
  • Recall: {'recall': 0.9476614699331849}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 449 0.2487 {'accuracy': 0.9532293986636972} {'f1': 0.9304040652863451} {'precision': 0.9086462864767536} {'recall': 0.9532293986636972}
0.2176 2.0 898 0.2366 {'accuracy': 0.9532293986636972} {'f1': 0.9304040652863451} {'precision': 0.9086462864767536} {'recall': 0.9532293986636972}
0.1796 3.0 1347 0.2228 {'accuracy': 0.9526726057906458} {'f1': 0.9320734514025724} {'precision': 0.9182722571033837} {'recall': 0.9526726057906458}
0.1469 4.0 1796 0.2856 {'accuracy': 0.9437639198218263} {'f1': 0.9282364670603435} {'precision': 0.9135405361560103} {'recall': 0.9437639198218263}
0.1045 5.0 2245 0.3386 {'accuracy': 0.9437639198218263} {'f1': 0.9280406899884679} {'precision': 0.9132963430863958} {'recall': 0.9437639198218263}
0.0742 6.0 2694 0.3708 {'accuracy': 0.9437639198218263} {'f1': 0.928813770000516} {'precision': 0.9155656638103506} {'recall': 0.9437639198218263}
0.0401 7.0 3143 0.3897 {'accuracy': 0.9437639198218263} {'f1': 0.9291849652492169} {'precision': 0.9199457677450203} {'recall': 0.9437639198218263}
0.0263 8.0 3592 0.4163 {'accuracy': 0.9471046770601337} {'f1': 0.9322848244083336} {'precision': 0.9235426032908877} {'recall': 0.9471046770601337}
0.0149 9.0 4041 0.4249 {'accuracy': 0.9471046770601337} {'f1': 0.9313864813181381} {'precision': 0.9211608097664751} {'recall': 0.9471046770601337}
0.0149 10.0 4490 0.4293 {'accuracy': 0.9476614699331849} {'f1': 0.9316670582946814} {'precision': 0.9211843955719234} {'recall': 0.9476614699331849}

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1