BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Mik997/bge-base-financial-matryoshka")
# Run inference
sentences = [
'The Company’s future gross margins can be impacted by a variety of factors, as discussed in Part I, Item 1A of this Form 10-K under the heading “Risk Factors.” As a result, the Company believes, in general, gross margins will be subject to volatility and downward pressure.',
"What factors could impact the company's future gross margins?",
"How much did Visa Inc.'s net income increase from 2022 to 2023?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_768
,dim_512
,dim_256
,dim_128
anddim_64
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7086 | 0.7029 | 0.7 | 0.68 | 0.6529 |
cosine_accuracy@3 | 0.84 | 0.84 | 0.8429 | 0.8157 | 0.7814 |
cosine_accuracy@5 | 0.88 | 0.8714 | 0.8729 | 0.8543 | 0.83 |
cosine_accuracy@10 | 0.9071 | 0.91 | 0.9057 | 0.8929 | 0.87 |
cosine_precision@1 | 0.7086 | 0.7029 | 0.7 | 0.68 | 0.6529 |
cosine_precision@3 | 0.28 | 0.28 | 0.281 | 0.2719 | 0.2605 |
cosine_precision@5 | 0.176 | 0.1743 | 0.1746 | 0.1709 | 0.166 |
cosine_precision@10 | 0.0907 | 0.091 | 0.0906 | 0.0893 | 0.087 |
cosine_recall@1 | 0.7086 | 0.7029 | 0.7 | 0.68 | 0.6529 |
cosine_recall@3 | 0.84 | 0.84 | 0.8429 | 0.8157 | 0.7814 |
cosine_recall@5 | 0.88 | 0.8714 | 0.8729 | 0.8543 | 0.83 |
cosine_recall@10 | 0.9071 | 0.91 | 0.9057 | 0.8929 | 0.87 |
cosine_ndcg@10 | 0.8118 | 0.8096 | 0.8064 | 0.7889 | 0.761 |
cosine_mrr@10 | 0.7806 | 0.7771 | 0.7741 | 0.7553 | 0.7261 |
cosine_map@100 | 0.7843 | 0.7806 | 0.7779 | 0.7595 | 0.7304 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 2 tokens
- mean: 47.11 tokens
- max: 512 tokens
- min: 2 tokens
- mean: 20.61 tokens
- max: 42 tokens
- Samples:
positive anchor Revenue and expenses of our joint ventures are not consolidated into our financial statements; rather, our proportionate share of the earnings of each joint venture is reflected as Equity income.
How is the equity income from joint ventures accounted for in the financial statements?
In December 2023, we launched Gemini, our most capable and general model. It was built from the ground up to be multimodal, which means it can generalize and seamlessly understand, operate across, and combine different types of information, including text, code, audio, images, and video.
What does Google's new model 'Gemini' aim to achieve?
Impairment of goodwill and other assets, restructuring costs
$ - Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.576 | - | - | - | - | - |
0.9746 | 12 | - | 0.7909 | 0.7896 | 0.7866 | 0.7716 | 0.7420 |
1.6244 | 20 | 0.6635 | - | - | - | - | - |
1.9492 | 24 | - | 0.8063 | 0.8049 | 0.8034 | 0.7832 | 0.7584 |
2.4365 | 30 | 0.4638 | - | - | - | - | - |
2.9239 | 36 | - | 0.8099 | 0.8086 | 0.8068 | 0.7876 | 0.7613 |
3.2487 | 40 | 0.4142 | - | - | - | - | - |
3.8985 | 48 | - | 0.8118 | 0.8096 | 0.8064 | 0.7889 | 0.761 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Mik997/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.709
- Cosine Accuracy@3 on dim 768self-reported0.840
- Cosine Accuracy@5 on dim 768self-reported0.880
- Cosine Accuracy@10 on dim 768self-reported0.907
- Cosine Precision@1 on dim 768self-reported0.709
- Cosine Precision@3 on dim 768self-reported0.280
- Cosine Precision@5 on dim 768self-reported0.176
- Cosine Precision@10 on dim 768self-reported0.091
- Cosine Recall@1 on dim 768self-reported0.709
- Cosine Recall@3 on dim 768self-reported0.840