File size: 15,442 Bytes
88eca77
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space (Tuple)\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Uses the CombinedExtractor\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x0000025BAC030790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x0000025BAC02E040>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684399449668086400, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVcQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMP0M6XENvZGVzXHJsXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAtCDQPqZYKbxigAc/tCDQPqZYKbxigAc/tCDQPqZYKbxigAc/tCDQPqZYKbxigAc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAkGMfv3hCVb+Ds6u+3KTBvpBOnj9dx1E/k0ODP8htT798oxU/BBcnv9YNsT/CNq6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTy0INA+plgpvGKABz83NLA8cFBRux7/hTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4064995  -0.01033608  0.5293027 ]\n [ 0.4064995  -0.01033608  0.5293027 ]\n [ 0.4064995  -0.01033608  0.5293027 ]\n [ 0.4064995  -0.01033608  0.5293027 ]]", "desired_goal": "[[-0.62261295 -0.8330455  -0.33535394]\n [-0.3782109   1.2367725   0.8194483 ]\n [ 1.0254997  -0.8102689   0.5845258 ]\n [-0.65269494  1.3832347  -1.3610461 ]]", "observation": "[[ 0.4064995  -0.01033608  0.5293027   0.02150927 -0.00319388  0.016357  ]\n [ 0.4064995  -0.01033608  0.5293027   0.02150927 -0.00319388  0.016357  ]\n [ 0.4064995  -0.01033608  0.5293027   0.02150927 -0.00319388  0.016357  ]\n [ 0.4064995  -0.01033608  0.5293027   0.02150927 -0.00319388  0.016357  ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbnoZvtO8pj1czSA+mRClvXmWWT3zq4E+Oq7TPeIA87y7CBE+qqwqPeSoQr2V+gI8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01]]", "desired_goal": "[[-0.1498811   0.08141484  0.15703338]\n [-0.08059806  0.05312202  0.253265  ]\n [ 0.10335965 -0.02966351  0.14163487]\n [ 0.04166857 -0.04752435  0.00799431]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12  1.9740014e-01  0.0000000e+00\n  -0.0000000e+00  0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZ9Xnaiu28L+UhpRSlIwBbJRLMowBdJRHQJzSq/dqL0l1fZQoaAZoCWgPQwjYYUz6e6npv5SGlFKUaBVLMmgWR0Cc0khgVoHtdX2UKGgGaAloD0MIfhtivOZV9L+UhpRSlGgVSzJoFkdAnNHPLHMlknV9lChoBmgJaA9DCNDv+zcvzvG/lIaUUpRoFUsyaBZHQJzRaoOx0Mh1fZQoaAZoCWgPQwgqxCPx8nTpv5SGlFKUaBVLMmgWR0Cc1GNjbzshdX2UKGgGaAloD0MIsrj/yHRo7r+UhpRSlGgVSzJoFkdAnNP/zOHFgnV9lChoBmgJaA9DCHFzKhkAKvm/lIaUUpRoFUsyaBZHQJzThpi7TUl1fZQoaAZoCWgPQwhCz2bV56r0v5SGlFKUaBVLMmgWR0Cc0yHwPRRedX2UKGgGaAloD0MI2v6VlSal7L+UhpRSlGgVSzJoFkdAnNXajWTX8XV9lChoBmgJaA9DCPQ2NjtSffS/lIaUUpRoFUsyaBZHQJzVdvaURnR1fZQoaAZoCWgPQwhslWBxOPPxv5SGlFKUaBVLMmgWR0Cc1P3CsOoYdX2UKGgGaAloD0MI1jcwuVHk57+UhpRSlGgVSzJoFkdAnNSZGe+VT3V9lChoBmgJaA9DCMiakUHuou2/lIaUUpRoFUsyaBZHQJzXQ/KQq7R1fZQoaAZoCWgPQwgvw3+6gYLvv5SGlFKUaBVLMmgWR0Cc1uBbwBo3dX2UKGgGaAloD0MIATPfwU8c7r+UhpRSlGgVSzJoFkdAnNZnJ5mh/XV9lChoBmgJaA9DCL1w58JIL+K/lIaUUpRoFUsyaBZHQJzWAn7YTTR1fZQoaAZoCWgPQwibBG9IowL0v5SGlFKUaBVLMmgWR0Cc2Mv3JxNqdX2UKGgGaAloD0MIyqgyjLtB9r+UhpRSlGgVSzJoFkdAnNhnWattAXV9lChoBmgJaA9DCNFbPLznAPK/lIaUUpRoFUsyaBZHQJzX7iVB2Oh1fZQoaAZoCWgPQwjBVDNrKWD6v5SGlFKUaBVLMmgWR0Cc14h11W8zdX2UKGgGaAloD0MIMT83NGUn47+UhpRSlGgVSzJoFkdAnNqJjMFEA3V9lChoBmgJaA9DCBE4EmiwafG/lIaUUpRoFUsyaBZHQJzaJfXwsoV1fZQoaAZoCWgPQwj0T3Cxogbtv5SGlFKUaBVLMmgWR0Cc2au7HyVfdX2UKGgGaAloD0MISRKEK6BQ1b+UhpRSlGgVSzJoFkdAnNlHEl3QlnV9lChoBmgJaA9DCGQhOgSOhPW/lIaUUpRoFUsyaBZHQJzcEsVclgN1fZQoaAZoCWgPQwjbMAqCx3f2v5SGlFKUaBVLMmgWR0Cc264n4O+adX2UKGgGaAloD0MI58dfWtTn8L+UhpRSlGgVSzJoFkdAnNs087p3YHV9lChoBmgJaA9DCBoxs89jlO+/lIaUUpRoFUsyaBZHQJzaz0QK8cx1fZQoaAZoCWgPQwguVz82yQ/yv5SGlFKUaBVLMmgWR0Cc3Z8Sf16FdX2UKGgGaAloD0MI6zpUU5L17r+UhpRSlGgVSzJoFkdAnN07e/Ho5nV9lChoBmgJaA9DCBBdUN8y5/e/lIaUUpRoFUsyaBZHQJzcwkfLcKx1fZQoaAZoCWgPQwi+hAoOL4jmv5SGlFKUaBVLMmgWR0Cc3FyYG+sYdX2UKGgGaAloD0MI3NlXHqQn6b+UhpRSlGgVSzJoFkdAnN9XhfjS5XV9lChoBmgJaA9DCOxq8pTVdOu/lIaUUpRoFUsyaBZHQJze8+8oQWh1fZQoaAZoCWgPQwhXfEPhszX4v5SGlFKUaBVLMmgWR0Cc3nq7AckudX2UKGgGaAloD0MIXcR3YtbL8L+UhpRSlGgVSzJoFkdAnN4XGS6lL3V9lChoBmgJaA9DCM++8iA9xfy/lIaUUpRoFUsyaBZHQJzg4sxwhnt1fZQoaAZoCWgPQwhioGtfQO/2v5SGlFKUaBVLMmgWR0Cc4H81n/T9dX2UKGgGaAloD0MIVHQkl/+Q9L+UhpRSlGgVSzJoFkdAnOAGAbyYonV9lChoBmgJaA9DCEp87gT7b/O/lIaUUpRoFUsyaBZHQJzfoVj7Q9l1fZQoaAZoCWgPQwgSh2wgXSzyv5SGlFKUaBVLMmgWR0Cc4mwFkhA4dX2UKGgGaAloD0MIwRw9fm9T/b+UhpRSlGgVSzJoFkdAnOIIbn5i3HV9lChoBmgJaA9DCFUUr7K2Kee/lIaUUpRoFUsyaBZHQJzhjzpX6qN1fZQoaAZoCWgPQwh+/+bFia/5v5SGlFKUaBVLMmgWR0Cc4SqRlpXZdX2UKGgGaAloD0MItYzUeyrn8b+UhpRSlGgVSzJoFkdAnOPi1uzhP3V9lChoBmgJaA9DCIF2hxQD5PO/lIaUUpRoFUsyaBZHQJzjfjkuHvd1fZQoaAZoCWgPQwhE/S5szRb+v5SGlFKUaBVLMmgWR0Cc4wUFSsKcdX2UKGgGaAloD0MIYhIu5BGc+L+UhpRSlGgVSzJoFkdAnOKgXIlt0nV9lChoBmgJaA9DCK0x6ITQgfG/lIaUUpRoFUsyaBZHQJzlWZTho/R1fZQoaAZoCWgPQwj/XDRkPEr6v5SGlFKUaBVLMmgWR0Cc5PX+ERJ3dX2UKGgGaAloD0MI6+I2GsCb97+UhpRSlGgVSzJoFkdAnOR8yeqaPXV9lChoBmgJaA9DCG7DKAge3/y/lIaUUpRoFUsyaBZHQJzkGCEpRXR1fZQoaAZoCWgPQwjs3orEBFUAwJSGlFKUaBVLMmgWR0Cc5qxjriVCdX2UKGgGaAloD0MIshGI1/UL/b+UhpRSlGgVSzJoFkdAnOZIzN2TxHV9lChoBmgJaA9DCOtU+Z6RSPG/lIaUUpRoFUsyaBZHQJzlzpIMBp51fZQoaAZoCWgPQwjY9Qt2w7YDwJSGlFKUaBVLMmgWR0Cc5WnpSrHVdX2UKGgGaAloD0MIUkfH1cgu/b+UhpRSlGgVSzJoFkdAnOf7FwT/Q3V9lChoBmgJaA9DCIUn9PqTOPe/lIaUUpRoFUsyaBZHQJznl4B3iaR1fZQoaAZoCWgPQwiS6ju/KMH1v5SGlFKUaBVLMmgWR0Cc5x1FYuCgdX2UKGgGaAloD0MIpP/lWrTA97+UhpRSlGgVSzJoFkdAnOa4nKGL1nV9lChoBmgJaA9DCOfhBKbTOv2/lIaUUpRoFUsyaBZHQJzpVA6dUbV1fZQoaAZoCWgPQwjkgcgiTfz0v5SGlFKUaBVLMmgWR0Cc6O9xIatLdX2UKGgGaAloD0MIbw7Xag/7+L+UhpRSlGgVSzJoFkdAnOh1NlAeJnV9lChoBmgJaA9DCHDpmPOM/QHAlIaUUpRoFUsyaBZHQJzoEI1LrX11fZQoaAZoCWgPQwgYlGk0ufgEwJSGlFKUaBVLMmgWR0Cc6si++M6zdX2UKGgGaAloD0MIGF3eHK6V+L+UhpRSlGgVSzJoFkdAnOpkIToMa3V9lChoBmgJaA9DCG1TPC6qxfG/lIaUUpRoFUsyaBZHQJzp6u1WsBB1fZQoaAZoCWgPQwh9k6ZB0fz9v5SGlFKUaBVLMmgWR0Cc6YU9pyp8dX2UKGgGaAloD0MIE2BY/nxb8r+UhpRSlGgVSzJoFkdAnOw1OCXhO3V9lChoBmgJaA9DCL1tpkI8Uva/lIaUUpRoFUsyaBZHQJzr0aESM991fZQoaAZoCWgPQwjohqbs9IPsv5SGlFKUaBVLMmgWR0Cc61htLteEdX2UKGgGaAloD0MIbJih8USQ9L+UhpRSlGgVSzJoFkdAnOrzxG2CunV9lChoBmgJaA9DCK/RcqCH2t+/lIaUUpRoFUsyaBZHQJztwH0K7Zp1fZQoaAZoCWgPQwjqWnufqsLrv5SGlFKUaBVLMmgWR0Cc7VzmfXf7dX2UKGgGaAloD0MI/3qFBfcD4b+UhpRSlGgVSzJoFkdAnOziq6vq1XV9lChoBmgJaA9DCKvLKQExaQDAlIaUUpRoFUsyaBZHQJzsfgKnei11fZQoaAZoCWgPQwjwv5Xs2Ej9v5SGlFKUaBVLMmgWR0Cc71Y3vQWvdX2UKGgGaAloD0MISu1FtB0T8L+UhpRSlGgVSzJoFkdAnO7yoOx0MnV9lChoBmgJaA9DCD230JUIVPO/lIaUUpRoFUsyaBZHQJzueWzF+/h1fZQoaAZoCWgPQwg3wqIiTgcAwJSGlFKUaBVLMmgWR0Cc7hTEBKcvdX2UKGgGaAloD0MIOzYC8bp++r+UhpRSlGgVSzJoFkdAnPDH05EMLHV9lChoBmgJaA9DCL9IaMu5VPG/lIaUUpRoFUsyaBZHQJzwZDzAeq91fZQoaAZoCWgPQwgAOPbsuYz7v5SGlFKUaBVLMmgWR0Cc7+sImgJ1dX2UKGgGaAloD0MIeCgK9ImcAsCUhpRSlGgVSzJoFkdAnO+GX9itrHV9lChoBmgJaA9DCNtugm+avuW/lIaUUpRoFUsyaBZHQJzyTPD50r91fZQoaAZoCWgPQwiOzCN/MHDsv5SGlFKUaBVLMmgWR0Cc8elaKUFCdX2UKGgGaAloD0MIuOUjKemh8b+UhpRSlGgVSzJoFkdAnPFwJkXk53V9lChoBmgJaA9DCPqXpDLFXPC/lIaUUpRoFUsyaBZHQJzxC32EkB11fZQoaAZoCWgPQwj+gAcGEL7jv5SGlFKUaBVLMmgWR0Cc9ARdhRZVdX2UKGgGaAloD0MIoIhFDDtsAcCUhpRSlGgVSzJoFkdAnPOgxrSE13V9lChoBmgJaA9DCIxl+iXiLem/lIaUUpRoFUsyaBZHQJzzJovi97F1fZQoaAZoCWgPQwjF46JaRJT0v5SGlFKUaBVLMmgWR0Cc8sHjIaLodX2UKGgGaAloD0MILlVpi2u8/L+UhpRSlGgVSzJoFkdAnPW2p2ll9XV9lChoBmgJaA9DCOdtbHak+gfAlIaUUpRoFUsyaBZHQJz1UxDb8FZ1fZQoaAZoCWgPQwjhfOpYpXTvv5SGlFKUaBVLMmgWR0Cc9NjVx0dSdX2UKGgGaAloD0MIXOUJhJ3i87+UhpRSlGgVSzJoFkdAnPR0LQXyiHV9lChoBmgJaA9DCD4+ITtvowLAlIaUUpRoFUsyaBZHQJz3ZNRFZxJ1fZQoaAZoCWgPQwhd4sgDkSUAwJSGlFKUaBVLMmgWR0Cc9wE9Mbm2dX2UKGgGaAloD0MIbojxmle18r+UhpRSlGgVSzJoFkdAnPaHAmAskXV9lChoBmgJaA9DCJijx+9tevu/lIaUUpRoFUsyaBZHQJz2I2CNCJJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True  True  True]", "bounded_above": "[ True  True  True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cpu", "GPU Enabled": "False", "Numpy": "1.24.3", "Gym": "0.21.0"}}