|
--- |
|
tags: |
|
- autotrain |
|
- text-classification |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
widget: |
|
- text: I love AutoTrain |
|
language: |
|
- en |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# Clickbait Detection Model |
|
|
|
This is a **custom-trained text classification model** created using Hugging Face **AutoTrain**. The model is designed to classify text into two categories: |
|
- **Clickbait** |
|
- **Not Clickbait** |
|
|
|
The training was conducted using a fine-tuned version of the `sentence-transformers/all-mpnet-base-v2` base model, which is well-suited for text classification tasks. |
|
|
|
--- |
|
|
|
## Model Details |
|
|
|
- **Base Model**: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
|
- **Problem Type**: Text Classification |
|
- **Language**: English (`en`) |
|
- **Pipeline Tag**: text-classification |
|
- **Tags**: autotrain, text-classification |
|
|
|
--- |
|
|
|
## Usage |
|
|
|
You can use this model with Hugging Face’s `transformers` library to classify text into `clickbait` or `not clickbait`. |
|
|
|
### Example Code |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
|
|
# Load tokenizer and model |
|
model_name = "Milan97/ClickbaitDetectionModel" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
# Input text |
|
text = "You won’t believe what happened next!" |
|
|
|
# Tokenize and perform inference |
|
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) |
|
outputs = model(**inputs) |
|
|
|
# Get predicted label and confidence |
|
logits = outputs.logits |
|
predicted_class = logits.argmax(dim=1).item() |
|
confidence = logits.softmax(dim=1).max().item() |
|
|
|
# Label mapping |
|
labels = {0: "Not Clickbait", 1: "Clickbait"} |
|
|
|
print(f"Text: {text}") |
|
print(f"Prediction: {labels[predicted_class]} (Confidence: {confidence:.2f})") |