Milan97's picture
Update README.md
4ea7558 verified
---
tags:
- autotrain
- text-classification
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- text: I love AutoTrain
language:
- en
pipeline_tag: text-classification
---
# Clickbait Detection Model
This is a **custom-trained text classification model** created using Hugging Face **AutoTrain**. The model is designed to classify text into two categories:
- **Clickbait**
- **Not Clickbait**
The training was conducted using a fine-tuned version of the `sentence-transformers/all-mpnet-base-v2` base model, which is well-suited for text classification tasks.
---
## Model Details
- **Base Model**: [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
- **Problem Type**: Text Classification
- **Language**: English (`en`)
- **Pipeline Tag**: text-classification
- **Tags**: autotrain, text-classification
---
## Usage
You can use this model with Hugging Face’s `transformers` library to classify text into `clickbait` or `not clickbait`.
### Example Code
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
# Load tokenizer and model
model_name = "Milan97/ClickbaitDetectionModel"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
# Input text
text = "You won’t believe what happened next!"
# Tokenize and perform inference
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
# Get predicted label and confidence
logits = outputs.logits
predicted_class = logits.argmax(dim=1).item()
confidence = logits.softmax(dim=1).max().item()
# Label mapping
labels = {0: "Not Clickbait", 1: "Clickbait"}
print(f"Text: {text}")
print(f"Prediction: {labels[predicted_class]} (Confidence: {confidence:.2f})")