Minami-su's picture
Update README.md
f67dba6 verified
|
raw
history blame
2.34 kB
metadata
license: other
license_name: qwen
license_link: >-
  https://github.com/QwenLM/Qwen/blob/main/Tongyi%20Qianwen%20LICENSE%20AGREEMENT
language:
  - en
  - zh
library_name: transformers
pipeline_tag: text-generation
inference: false
tags:
  - llama
  - qwen
  - qwen1.5
  - qwen2

This is the LLaMAfied version of Qwen1.5-0.5B-Chat model by Alibaba Cloud. The original codebase can be found at: (https://github.com/hiyouga/LLaMA-Factory/blob/main/tests/llamafy_qwen.py). I have made modifications to make it compatible with qwen1.5. This model is converted with https://github.com/Minami-su/character_AI_open/blob/main/llamafy_qwen_v2.py

Usage:

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
tokenizer = AutoTokenizer.from_pretrained("Minami-su/Qwen1.5-0.5B-Chat_llamafy")
model = AutoModelForCausalLM.from_pretrained("Minami-su/Qwen1.5-0.5B-Chat_llamafy", torch_dtype="auto", device_map="auto")
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)

messages = [
    {"role": "user", "content": "Who are you?"}
]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
inputs = inputs.to("cuda")
generate_ids = model.generate(inputs,max_length=2048, streamer=streamer)

Test

load in 4bit

hf-causal (pretrained=Qwen1.5-0.5B-Chat), limit: None, provide_description: False, num_fewshot: 0, batch_size: 32

Task Version Metric Value Stderr
arc_challenge 0 acc 0.2389 ± 0.0125
acc_norm 0.2688 ± 0.0130
truthfulqa_mc 1 mc1 0.2534 ± 0.0152
mc2 0.4322 ± 0.0151
winogrande 0 acc 0.5564 ± 0.0140

load in 4bit

hf-causal (pretrained=Qwen1.5-0.5B-Chat_llamafy), limit: None, provide_description: False, num_fewshot: 0, batch_size: 32

Task Version Metric Value Stderr
arc_challenge 0 acc 0.2398 ± 0.0125
acc_norm 0.2705 ± 0.0130
truthfulqa_mc 1 mc1 0.2534 ± 0.0152
mc2 0.4322 ± 0.0151
winogrande 0 acc 0.5556 ± 0.0140