Minbyul's picture
End of training
6483732 verified
---
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
- trl
- sft
- generated_from_trainer
datasets:
- HuggingFaceH4/deita-10k-v0-sft
model-index:
- name: llama3-8b-instruct-wo-live_qa-iter-sft-step1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama3-8b-instruct-wo-live_qa-iter-sft-step1
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the HuggingFaceH4/deita-10k-v0-sft dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.6676 | 0.98 | 11 | 0.6013 |
| 0.3797 | 1.96 | 22 | 0.5362 |
| 0.2865 | 2.93 | 33 | 0.5252 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2