QscQ commited on
Commit
eb3e70f
·
1 Parent(s): 75b83bd
vllm_deployment_guide.md CHANGED
@@ -4,7 +4,7 @@
4
 
5
  ## 📖 Introduction
6
 
7
- We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to deploy MiniMax-M1 model. Based on our testing, vLLM performs excellently when deploying this model, with the following features:
8
 
9
  - 🔥 Outstanding service throughput performance
10
  - ⚡ Efficient and intelligent memory management
@@ -17,7 +17,7 @@ The MiniMax-M1 model can run efficiently on a single server equipped with 8 H800
17
 
18
  ### MiniMax-M1 Model Obtaining
19
 
20
- You can download the model from our official HuggingFace repository: [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1)
21
 
22
  Download command:
23
  ```
@@ -32,7 +32,7 @@ Or download using git:
32
 
33
  ```bash
34
  git lfs install
35
- git clone https://huggingface.co/MiniMaxAI/MiniMax-M1
36
  ```
37
 
38
  ⚠️ **Important Note**: Please ensure that [Git LFS](https://git-lfs.github.com/) is installed on your system, which is necessary for completely downloading the model weight files.
 
4
 
5
  ## 📖 Introduction
6
 
7
+ We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to deploy [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k) model. Based on our testing, vLLM performs excellently when deploying this model, with the following features:
8
 
9
  - 🔥 Outstanding service throughput performance
10
  - ⚡ Efficient and intelligent memory management
 
17
 
18
  ### MiniMax-M1 Model Obtaining
19
 
20
+ You can download the model from our official HuggingFace repository: [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k)
21
 
22
  Download command:
23
  ```
 
32
 
33
  ```bash
34
  git lfs install
35
+ git clone https://huggingface.co/MiniMaxAI/MiniMax-M1-40k
36
  ```
37
 
38
  ⚠️ **Important Note**: Please ensure that [Git LFS](https://git-lfs.github.com/) is installed on your system, which is necessary for completely downloading the model weight files.
vllm_deployment_guide_cn.md CHANGED
@@ -2,7 +2,7 @@
2
 
3
  ## 📖 简介
4
 
5
- 我们推荐使用 [vLLM](https://docs.vllm.ai/en/latest/) 来部署 [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1) 模型。经过我们的测试,vLLM 在部署这个模型时表现出色,具有以下特点:
6
 
7
  - 🔥 卓越的服务吞吐量性能
8
  - ⚡ 高效智能的内存管理机制
@@ -15,7 +15,7 @@ MiniMax-M1 模型可在单台配备8个H800或8个H20 GPU的服务器上高效
15
 
16
  ### MiniMax-M1 模型获取
17
 
18
- 您可以从我们的官方 HuggingFace 仓库下载模型:[MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1)
19
 
20
  下载命令:
21
  ```
@@ -30,7 +30,7 @@ export HF_ENDPOINT=https://hf-mirror.com
30
 
31
  ```bash
32
  git lfs install
33
- git clone https://huggingface.co/MiniMaxAI/MiniMax-M1
34
  ```
35
 
36
  ⚠️ **重要提示**:请确保系统已安装 [Git LFS](https://git-lfs.github.com/),这对于完整下载模型权重文件是必需的。
 
2
 
3
  ## 📖 简介
4
 
5
+ 我们推荐使用 [vLLM](https://docs.vllm.ai/en/latest/) 来部署 [MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k) 模型。经过我们的测试,vLLM 在部署这个模型时表现出色,具有以下特点:
6
 
7
  - 🔥 卓越的服务吞吐量性能
8
  - ⚡ 高效智能的内存管理机制
 
15
 
16
  ### MiniMax-M1 模型获取
17
 
18
+ 您可以从我们的官方 HuggingFace 仓库下载模型:[MiniMax-M1](https://huggingface.co/MiniMaxAI/MiniMax-M1-40k)
19
 
20
  下载命令:
21
  ```
 
30
 
31
  ```bash
32
  git lfs install
33
+ git clone https://huggingface.co/MiniMaxAI/MiniMax-M1-40k
34
  ```
35
 
36
  ⚠️ **重要提示**:请确保系统已安装 [Git LFS](https://git-lfs.github.com/),这对于完整下载模型权重文件是必需的。