File size: 3,514 Bytes
f8a8008 9b16d71 f8a8008 9b16d71 f8a8008 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
# 🚀 MiniMax 模型 Transformers 部署指南
## 📖 简介
本指南将帮助您使用 [Transformers](https://huggingface.co/docs/transformers/index) 库部署 MiniMax-M1 模型。Transformers 是一个广泛使用的深度学习库,提供了丰富的预训练模型和灵活的模型操作接口。
## 🛠️ 环境准备
### 安装 Transformers
```bash
pip install transformers torch accelerate
```
## 📋 基本使用示例
预训练模型可以按照以下方式使用:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
MODEL_PATH = "{MODEL_PATH}"
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, device_map="auto", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
messages = [
{"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]},
{"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]},
{"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
generation_config = GenerationConfig(
max_new_tokens=20,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
)
generated_ids = model.generate(**model_inputs, generation_config=generation_config)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```
## ⚡ 性能优化
### 使用 Flash Attention 加速
上面的代码片段展示了不使用任何优化技巧的推理过程。但通过利用 [Flash Attention](../perf_train_gpu_one#flash-attention-2),可以大幅加速模型,因为它提供了模型内部使用的注意力机制的更快实现。
首先,确保安装最新版本的 Flash Attention 2:
```bash
pip install -U flash-attn --no-build-isolation
```
还要确保您拥有与 Flash-Attention 2 兼容的硬件。在[Flash Attention 官方仓库](https://github.com/Dao-AILab/flash-attention)的官方文档中了解更多信息。此外,请确保以半精度(例如 `torch.float16`)加载模型。
要使用 Flash Attention-2 加载和运行模型,请参考以下代码片段:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_PATH = "{MODEL_PATH}"
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, trust_remote_code=True, torch_dtype=torch.float16, attn_implementation="flash_attention_2", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
prompt = "My favourite condiment is"
model_inputs = tokenizer([prompt], return_tensors="pt").to("cuda")
generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True)
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## 📮 获取支持
如果您在部署 MiniMax-M1 模型过程中遇到任何问题:
- 请查看我们的官方文档
- 通过官方渠道联系我们的技术支持团队
- 在我们的 GitHub 仓库提交 Issue
我们会持续优化 Transformers 上的部署体验,欢迎您的反馈!
|