Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Mit Patel
  • Model type: Text generation/ classifier
  • Language(s) (NLP): English
  • Finetuned from model : Phi-2

Training Details

https://github.com/mit1280/fined-tuning/blob/main/phi_2_classification_fine_tune.ipynb

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • training_steps: 10000

Inference

!pip install -q transformers==4.37.2  accelerate==0.27.0

import re
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
import torch

tokenizer = AutoTokenizer.from_pretrained("Mit1208/phi-2-classification-sentiment-merged")
model = AutoModelForCausalLM.from_pretrained("Mit1208/phi-2-classification-sentiment-merged", device_map="auto", trust_remote_code=True).eval()

class EosListStoppingCriteria(StoppingCriteria):
    def __init__(self, eos_sequence = tokenizer.encode("<|im_end|>")):
        self.eos_sequence = eos_sequence

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
        return self.eos_sequence in last_ids

inf_conv = [{'from': 'human',
  'value': "Text: In sales volume , Coca-Cola 's market share has decreased by 2.2 % to 24.2 % ."},
 {'from': 'phi', 'value': "I've read this text."},
 {'from': 'human',
  'value': 'Please determine the sentiment of the given text and choose from the options: Positive, Negative, Neutral, or Cannot be determined.'}]
# need to load because model doesn't has classifer head.

id2label = {0: 'negative', 1: 'neutral', 2: 'positive'}

inference_text = tokenizer.apply_chat_template(inf_conv, tokenize=False) + '<|im_start|>phi:\n'
inputs = tokenizer(inference_text, return_tensors="pt", return_attention_mask=False).to('cuda')
outputs = model.generate(inputs["input_ids"], max_new_tokens=1024, pad_token_id= tokenizer.eos_token_id,
            stopping_criteria = [EosListStoppingCriteria()])

text = tokenizer.batch_decode(outputs)[0]
answer = text.split("<|im_start|>phi:")[-1].replace("<|im_end|>", "").replace(".", "")

sentiment_label = re.search(r'(\d)', answer)
sentiment_score = int(sentiment_label.group(1))

if sentiment_score:
    print(id2label.get(sentiment_score, "none"))
else:
    print("none")

Framework versions

  • PEFT 0.8.2
  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1
Downloads last month
16
Safetensors
Model size
2.78B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Mit1208/phi-2-classification-sentiment-merged