Translator / transcribe /helpers /vadprocessor.py
daihui.zhang
rename filenames
9494251
from copy import deepcopy
from time import time
from config import VAD_MODEL_PATH
from silero_vad import load_silero_vad
import numpy as np
import onnxruntime
import logging
from datetime import timedelta
import gc
from pydub import AudioSegment
from collections import deque
class AdaptiveSilenceController:
def __init__(self, base_silence_ms=120, min_ms=50, max_ms=600):
self.base = base_silence_ms
self.min = min_ms
self.max = max_ms
self.recent_silences = deque(maxlen=20)
self.recent_speeches = deque(maxlen=20)
def update_silence(self, duration_ms):
self.recent_silences.append(duration_ms)
def update_speech(self, duration_ms):
self.recent_speeches.append(duration_ms)
def get_adaptive_silence_ms(self):
# 1. 快速说话特征:平均语音段长度短(如 < 250ms)
avg_speech = np.mean(self.recent_speeches) if self.recent_speeches else self.base
avg_silence = np.mean(self.recent_silences) if self.recent_silences else self.base
# 2. 快速语音则缩短 silence 阈值
speed_factor = 1.0
if avg_speech < 300:
speed_factor = 0.5
elif avg_speech < 600:
speed_factor = 0.8
logging.warning(f"Avg speech :{avg_speech}, Avg silence: {avg_silence}")
# 3. silence 的变化趋势也考虑进去
adaptive = self.base * speed_factor + 0.3 * avg_silence
return int(max(self.min, min(self.max, adaptive)))
class OnnxWrapper():
def __init__(self, path, force_onnx_cpu=False):
opts = onnxruntime.SessionOptions()
opts.inter_op_num_threads = 1
opts.intra_op_num_threads = 1
if force_onnx_cpu and 'CPUExecutionProvider' in onnxruntime.get_available_providers():
self.session = onnxruntime.InferenceSession(path, providers=['CPUExecutionProvider'], sess_options=opts)
else:
self.session = onnxruntime.InferenceSession(path, sess_options=opts)
self.reset_states()
self.sample_rates = [16000]
def _validate_input(self, x: np.ndarray, sr: int):
if x.ndim == 1:
x = x[None]
if x.ndim > 2:
raise ValueError(f"Too many dimensions for input audio chunk {x.ndim}")
if sr != 16000 and (sr % 16000 == 0):
step = sr // 16000
x = x[:, ::step]
sr = 16000
if sr not in self.sample_rates:
raise ValueError(f"Supported sampling rates: {self.sample_rates} (or multiply of 16000)")
if sr / x.shape[1] > 31.25:
raise ValueError("Input audio chunk is too short")
return x, sr
def reset_states(self, batch_size=1):
self._state = np.zeros((2, batch_size, 128)).astype(np.float32)
self._context = np.zeros(0)
self._last_sr = 0
self._last_batch_size = 0
def __call__(self, x, sr: int):
x, sr = self._validate_input(x, sr)
num_samples = 512 if sr == 16000 else 256
if x.shape[-1] != num_samples:
raise ValueError(
f"Provided number of samples is {x.shape[-1]} (Supported values: 256 for 8000 sample rate, 512 for 16000)")
batch_size = x.shape[0]
context_size = 64 if sr == 16000 else 32
if not self._last_batch_size:
self.reset_states(batch_size)
if (self._last_sr) and (self._last_sr != sr):
self.reset_states(batch_size)
if (self._last_batch_size) and (self._last_batch_size != batch_size):
self.reset_states(batch_size)
if not len(self._context):
self._context = np.zeros((batch_size, context_size)).astype(np.float32)
x = np.concatenate([self._context, x], axis=1)
if sr in [8000, 16000]:
ort_inputs = {'input': x, 'state': self._state, 'sr': np.array(sr, dtype='int64')}
ort_outs = self.session.run(None, ort_inputs)
out, state = ort_outs
self._state = state
else:
raise ValueError()
self._context = x[..., -context_size:]
self._last_sr = sr
self._last_batch_size = batch_size
# out = torch.from_numpy(out)
return out
def audio_forward(self, audio: np.ndarray, sr: int):
outs = []
x, sr = self._validate_input(audio, sr)
self.reset_states()
num_samples = 512 if sr == 16000 else 256
if x.shape[1] % num_samples:
pad_num = num_samples - (x.shape[1] % num_samples)
x = np.pad(x, ((0, 0), (0, pad_num)), 'constant', constant_values=(0.0, 0.0))
for i in range(0, x.shape[1], num_samples):
wavs_batch = x[:, i:i + num_samples]
out_chunk = self.__call__(wavs_batch, sr)
outs.append(out_chunk)
stacked = np.concatenate(outs, axis=1)
return stacked
class VADIteratorOnnx:
def __init__(self,
threshold: float = 0.5,
sampling_rate: int = 16000,
min_silence_duration_ms: int = 100,
max_speech_duration_s: float = float('inf'),
speech_pad_ms: int = 30
):
self.model = OnnxWrapper(VAD_MODEL_PATH, True)
self.threshold = threshold
self.sampling_rate = sampling_rate
if sampling_rate not in [8000, 16000]:
raise ValueError('VADIterator does not support sampling rates other than [8000, 16000]')
self.min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
# self.max_speech_samples = int(sampling_rate * max_speech_duration_s)
self.speech_pad_samples = sampling_rate * speech_pad_ms / 1000
self.reset_states()
def reset_states(self):
self.model.reset_states()
self.triggered = False
self.temp_end = 0
self.current_sample = 0
self.start = 0
def __call__(self, x: np.ndarray, return_seconds=False):
"""
x: np.ndarray
audio chunk (see examples in repo)
return_seconds: bool (default - False)
whether return timestamps in seconds (default - samples)
"""
window_size_samples = 512 if self.sampling_rate == 16000 else 256
x = x[:window_size_samples]
if len(x) < window_size_samples:
x = np.pad(x, ((0, 0), (0, window_size_samples - len(x))), 'constant', constant_values=0.0)
self.current_sample += window_size_samples
speech_prob = self.model(x, self.sampling_rate)[0,0]
if (speech_prob >= self.threshold) and self.temp_end:
self.temp_end = 0
if (speech_prob >= self.threshold) and not self.triggered:
self.triggered = True
# speech_start = max(0, self.current_sample - window_size_samples)
speech_start = max(0, self.current_sample - self.speech_pad_samples - window_size_samples)
self.start = speech_start
return {'start': int(speech_start) if not return_seconds else round(speech_start / self.sampling_rate, 1)}
# if (speech_prob >= self.threshold) and self.current_sample - self.start >= self.max_speech_samples:
# if self.temp_end:
# self.temp_end = 0
# self.start = self.current_sample
# return {'end': int(self.current_sample) if not return_seconds else round(self.current_sample / self.sampling_rate, 1)}
if (speech_prob < self.threshold - 0.15) and self.triggered:
if not self.temp_end:
self.temp_end = self.current_sample
if self.current_sample - self.temp_end < self.min_silence_samples:
return None
else:
# speech_end = self.temp_end - window_size_samples
speech_end = self.temp_end + self.speech_pad_samples - window_size_samples
self.temp_end = 0
self.triggered = False
return {'end': int(speech_end) if not return_seconds else round(speech_end / self.sampling_rate, 1)}
return None
class FixedVADIterator(VADIteratorOnnx):
'''It fixes VADIterator by allowing to process any audio length, not only exactly 512 frames at once.
If audio to be processed at once is long and multiple voiced segments detected,
then __call__ returns the start of the first segment, and end (or middle, which means no end) of the last segment.
'''
def reset_states(self):
super().reset_states()
self.buffer = np.array([],dtype=np.float32)
def __call__(self, x, return_seconds=False):
self.buffer = np.append(self.buffer, x)
ret = None
while len(self.buffer) >= 512:
r = super().__call__(self.buffer[:512], return_seconds=return_seconds)
self.buffer = self.buffer[512:]
if ret is None:
ret = r
elif r is not None:
if 'end' in r:
ret['end'] = r['end'] # the latter end
if 'start' in r and 'end' in ret: # there is an earlier start.
# Remove end, merging this segment with the previous one.
del ret['end']
return ret if ret != {} else None
class VadV2:
def __init__(self,
threshold: float = 0.5,
sampling_rate: int = 16000,
min_silence_duration_ms: int = 100,
speech_pad_ms: int = 30,
max_speech_duration_s: float = float('inf')):
# self.vad_iterator = VADIterator(threshold, sampling_rate, min_silence_duration_ms)
self.vad_iterator = VADIteratorOnnx(threshold, sampling_rate, min_silence_duration_ms, max_speech_duration_s)
self.speech_pad_samples = int(sampling_rate * speech_pad_ms / 1000)
self.sampling_rate = sampling_rate
self.audio_buffer = np.array([], dtype=np.float32)
self.start = 0
self.end = 0
self.offset = 0
assert speech_pad_ms <= min_silence_duration_ms, "speech_pad_ms should be less than min_silence_duration_ms"
self.max_speech_samples = int(sampling_rate * max_speech_duration_s)
self.silence_chunk_size = 0
self.silence_chunk_threshold = 60 / (512 / self.sampling_rate)
def reset(self):
self.audio_buffer = np.array([], dtype=np.float32)
self.start = 0
self.end = 0
self.offset = 0
self.vad_iterator.reset_states()
def __call__(self, x: np.ndarray = None):
if x is None:
if self.start:
start = max(self.offset, self.start - self.speech_pad_samples)
end = self.offset + len(self.audio_buffer)
start_ts = round(start / self.sampling_rate, 1)
end_ts = round(end / self.sampling_rate, 1)
audio_data = self.audio_buffer[start - self.offset: end - self.offset]
result = {
"start": start_ts,
"end": end_ts,
"audio": audio_data,
}
else:
result = None
self.reset()
return result
self.audio_buffer = np.append(self.audio_buffer, deepcopy(x))
result = self.vad_iterator(x)
if result is not None:
# self.start = result.get('start', self.start)
# self.end = result.get('end', self.end)
self.silence_chunk_size = 0
if 'start' in result:
self.start = result['start']
if 'end' in result:
self.end = result['end']
else:
self.silence_chunk_size += 1
if self.start == 0 and len(self.audio_buffer) > self.speech_pad_samples:
self.offset += len(self.audio_buffer) - self.speech_pad_samples
self.audio_buffer = self.audio_buffer[-self.speech_pad_samples:]
if self.silence_chunk_size >= self.silence_chunk_threshold:
self.offset += len(self.audio_buffer) - self.speech_pad_samples
self.audio_buffer = self.audio_buffer[-self.speech_pad_samples:]
self.silence_chunk_size = 0
if self.end > self.start:
start = max(self.offset, self.start - self.speech_pad_samples)
end = self.end + self.speech_pad_samples
start_ts = round(start / self.sampling_rate, 1)
end_ts = round(end / self.sampling_rate, 1)
audio_data = self.audio_buffer[start - self.offset: end - self.offset]
self.audio_buffer = self.audio_buffer[self.end - self.offset:]
self.offset = self.end
self.start = self.end
# self.start = 0
self.end = 0
result = {
"start": start_ts,
"end": end_ts,
"audio": audio_data,
}
return result
return None
class SileroVADProcessor:
"""
A class for processing audio files using Silero VAD to detect voice activity
and extract voice segments from audio files.
"""
def __init__(self,
activate_threshold=0.5,
fusion_threshold=0.3,
min_speech_duration=0.25,
max_speech_duration=20,
min_silence_duration=250,
sample_rate=16000,
ort_providers=None):
"""
Initialize the SileroVADProcessor.
Args:
activate_threshold (float): Threshold for voice activity detection
fusion_threshold (float): Threshold for merging close speech segments (seconds)
min_speech_duration (float): Minimum duration of speech to be considered valid (seconds)
max_speech_duration (float): Maximum duration of speech (seconds)
min_silence_duration (int): Minimum silence duration (ms)
sample_rate (int): Sample rate of the audio (8000 or 16000 Hz)
ort_providers (list): ONNX Runtime providers for acceleration
"""
# VAD parameters
self.activate_threshold = activate_threshold
self.fusion_threshold = fusion_threshold
self.min_speech_duration = min_speech_duration
self.max_speech_duration = max_speech_duration
self.min_silence_duration = min_silence_duration
self.sample_rate = sample_rate
self.ort_providers = ort_providers if ort_providers else []
# Initialize logger
self.logger = logging.getLogger(__name__)
# Load Silero VAD model
self._init_onnx_session()
self.silero_vad = load_silero_vad(onnx=True)
def _init_onnx_session(self):
"""Initialize ONNX Runtime session with appropriate settings."""
session_opts = onnxruntime.SessionOptions()
session_opts.log_severity_level = 3
session_opts.inter_op_num_threads = 0
session_opts.intra_op_num_threads = 0
session_opts.enable_cpu_mem_arena = True
session_opts.execution_mode = onnxruntime.ExecutionMode.ORT_SEQUENTIAL
session_opts.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
session_opts.add_session_config_entry("session.intra_op.allow_spinning", "1")
session_opts.add_session_config_entry("session.inter_op.allow_spinning", "1")
session_opts.add_session_config_entry("session.set_denormal_as_zero", "1")
# Set the session_opts to be used by silero_vad
# onnxruntime.capi._pybind_state.get_default_session_options(session_opts)
def load_audio(self, audio_path):
"""
Load audio file and prepare it for VAD processing.
Args:
audio_path (str): Path to the audio file
Returns:
numpy.ndarray: Audio data as numpy array
"""
self.logger.info(f"Loading audio from {audio_path}")
audio_segment = AudioSegment.from_file(audio_path)
audio_segment = audio_segment.set_channels(1).set_frame_rate(self.sample_rate)
# Convert to numpy array and normalize
dtype = np.float16 if self.use_gpu_fp16 else np.float32
audio_array = np.array(audio_segment.get_array_of_samples(), dtype=dtype) * 0.000030517578 # 1/32768
self.audio_segment = audio_segment # Store for later use
return audio_array
@property
def model(self):
return self.silero_vad
def process_timestamps(self, timestamps):
"""
Process VAD timestamps: filter short segments and merge close segments.
Args:
timestamps (list): List of (start, end) tuples
Returns:
list: Processed list of (start, end) tuples
"""
# Filter out short durations
filtered_timestamps = [(start, end) for start, end in timestamps
if (end - start) >= self.min_speech_duration]
# Fuse timestamps in two passes for better merging
fused_timestamps_1st = []
for start, end in filtered_timestamps:
if fused_timestamps_1st and (start - fused_timestamps_1st[-1][1] <= self.fusion_threshold):
fused_timestamps_1st[-1] = (fused_timestamps_1st[-1][0], end)
else:
fused_timestamps_1st.append((start, end))
fused_timestamps_2nd = []
for start, end in fused_timestamps_1st:
if fused_timestamps_2nd and (start - fused_timestamps_2nd[-1][1] <= self.fusion_threshold):
fused_timestamps_2nd[-1] = (fused_timestamps_2nd[-1][0], end)
else:
fused_timestamps_2nd.append((start, end))
return fused_timestamps_2nd
def format_time(self, seconds):
"""
Convert seconds to VTT time format 'hh:mm:ss.mmm'.
Args:
seconds (float): Time in seconds
Returns:
str: Formatted time string
"""
td = timedelta(seconds=seconds)
td_sec = td.total_seconds()
total_seconds = int(td_sec)
milliseconds = int((td_sec - total_seconds) * 1000)
hours = total_seconds // 3600
minutes = (total_seconds % 3600) // 60
seconds = total_seconds % 60
return f"{hours:02}:{minutes:02}:{seconds:02}.{milliseconds:03}"
def detect_speech(self, audio:np.array):
"""
Run VAD on the audio file to detect speech segments.
Args:
audio_path (str): Path to the audio file
Returns:
list: List of processed timestamps as (start, end) tuples
"""
self.logger.info("Starting VAD process")
start_time = time.time()
# Get speech timestamps
raw_timestamps = get_speech_timestamps(
audio,
model=self.silero_vad,
threshold=self.activate_threshold,
max_speech_duration_s=self.max_speech_duration,
min_speech_duration_ms=int(self.min_speech_duration * 1000),
min_silence_duration_ms=self.min_silence_duration,
return_seconds=True
)
# Convert to simple format and process
timestamps = [(item['start'], item['end']) for item in raw_timestamps]
processed_timestamps = self.process_timestamps(timestamps)
# Clean up
del audio
gc.collect()
self.logger.info(f"VAD completed in {time.time() - start_time:.3f} seconds")
return processed_timestamps
"""
Save timestamps in both second and sample indices formats.
Args:
timestamps (list): List of (start, end) tuples
output_prefix (str): Prefix for output files
"""
# Save timestamps in seconds (VTT format)
seconds_path = f"{output_prefix}_timestamps_second.txt"
with open(seconds_path, "w", encoding='UTF-8') as file:
self.logger.info("Saving timestamps in seconds format")
for start, end in timestamps:
s_time = self.format_time(start)
e_time = self.format_time(end)
line = f"{s_time} --> {e_time}\n"
file.write(line)
# Save timestamps in sample indices
indices_path = f"{output_prefix}_timestamps_indices.txt"
with open(indices_path, "w", encoding='UTF-8') as file:
self.logger.info("Saving timestamps in indices format")
for start, end in timestamps:
line = f"{int(start * self.sample_rate)} --> {int(end * self.sample_rate)}\n"
file.write(line)
self.logger.info(f"Timestamps saved to {seconds_path} and {indices_path}")
def extract_speech_segments(self, audio_segment, timestamps):
"""
Extract speech segments from the audio and combine them into a single audio file.
Args:
timestamps (list): List of (start, end) tuples indicating speech segments
Returns:
AudioSegment: The combined speech segments
"""
audio_segment = audio_segment.numpy()
combined_speech = np.array([], dtype=np.float32)
# Extract and combine each speech segment
for i, (start, end) in enumerate(timestamps):
# Convert seconds to milliseconds for pydub
start_ms = int(start * 1000)
end_ms = int(end * 1000)
# Ensure the end time does not exceed the length of the audio segment
if end_ms > len(audio_segment):
end_ms = len(audio_segment)
# Extract the segment
segment = audio_segment[start_ms:end_ms]
# Add to combined audio
combined_speech = np.append(combined_speech, segment)
return combined_speech
def process_audio(self, audio_array:np.array):
"""
Complete processing pipeline: detect speech, save timestamps, and optionally extract speech.
Returns:
tuple: (timestamps, output_speech_path if extract_speech else None)
"""
# Run VAD to detect speech
timestamps = self.detect_speech(audio_array)
combined_speech = self.extract_speech_segments(audio_array, timestamps)
return timestamps, combined_speech
class VadProcessor:
def __init__(
self,
prob_threshold=0.5,
silence_s=0.2,
cache_s=0.15,
sr=16000
):
self.prob_threshold = prob_threshold
self.cache_s = cache_s
self.sr = sr
self.silence_s = silence_s
self.vad = VadV2(self.prob_threshold, self.sr, self.silence_s * 1000, self.cache_s * 1000, max_speech_duration_s=15)
def process_audio(self, audio_buffer: np.ndarray):
audio = np.array([], np.float32)
for i in range(0, len(audio_buffer), 512):
chunk = audio_buffer[i:i+512]
ret = self.vad(chunk)
if ret:
audio = np.append(audio, ret['audio'])
return audio