Vortex
Collection
ModelCloud optimized and validated quants that pass/meet strict quality assurance on multiple benchmarks.
•
8 items
•
Updated
•
7
This model has been quantized using GPTQModel.
from transformers import AutoTokenizer
from gptqmodel import GPTQModel
tokenizer = AutoTokenizer.from_pretrained("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1")
model = GPTQModel.load("ModelCloud/Falcon3-10B-Instruct-gptqmodel-4bit-vortex-v1")
messages = [
{"role": "user", "content": "How can I design a data structure in C++ to store the top 5 largest integer numbers?"},
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_ids=input_tensor.to(model.device), max_new_tokens=512)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)