|
--- |
|
tags: |
|
- gptq |
|
- 4bit |
|
- gptqmodel |
|
- modelcloud |
|
- gemma2 |
|
--- |
|
**This model has been quantized using [GPTQModel](https://github.com/ModelCloud/GPTQModel).** |
|
|
|
- bits: 4 |
|
- group_size: 128 |
|
- desc_act: true |
|
- static_groups: false |
|
- sym: true |
|
- lm_head: false |
|
- damp_percent: 0.01 |
|
- true_sequential: true |
|
- model_name_or_path: "" |
|
- model_file_base_name: "model" |
|
- quant_method: "gptq" |
|
- checkpoint_format: "gptq" |
|
- meta: |
|
- quantizer: "gptqmodel:0.9.9-dev0" |
|
|
|
|
|
**Currently, only vllm can load the quantized gemma2-27b for proper inference. Here is an example:** |
|
```python |
|
import os |
|
# Gemma-2 use Flashinfer backend for models with logits_soft_cap. Otherwise, the output might be wrong. |
|
os.environ['VLLM_ATTENTION_BACKEND'] = 'FLASHINFER' |
|
|
|
from transformers import AutoTokenizer |
|
from gptqmodel import BACKEND, GPTQModel |
|
|
|
model_name = "ModelCloud/gemma-2-27b-it-gptq-4bit" |
|
|
|
prompt = [{"role": "user", "content": "I am in Shanghai, preparing to visit the natural history museum. Can you tell me the best way to"}] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
model = GPTQModel.from_quantized( |
|
model_name, |
|
backend=BACKEND.VLLM, |
|
) |
|
|
|
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True) |
|
outputs = model.generate(prompts=inputs, temperature=0.95, max_length=128) |
|
print(outputs[0].outputs[0].text) |
|
``` |