Sam Chaudry
Upload folder using huggingface_hub
7885a28 verified
raw
history blame
11.4 kB
"""Common tests for metaestimators"""
import functools
from contextlib import suppress
from inspect import signature
import numpy as np
import pytest
from sklearn.base import BaseEstimator, is_regressor
from sklearn.datasets import make_classification
from sklearn.ensemble import BaggingClassifier
from sklearn.exceptions import NotFittedError
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.feature_selection import RFE, RFECV
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV
from sklearn.pipeline import Pipeline, make_pipeline
from sklearn.preprocessing import MaxAbsScaler, StandardScaler
from sklearn.semi_supervised import SelfTrainingClassifier
from sklearn.utils import all_estimators
from sklearn.utils._test_common.instance_generator import _construct_instances
from sklearn.utils._testing import SkipTest, set_random_state
from sklearn.utils.estimator_checks import (
_enforce_estimator_tags_X,
_enforce_estimator_tags_y,
)
from sklearn.utils.validation import check_is_fitted
class DelegatorData:
def __init__(
self,
name,
construct,
skip_methods=(),
fit_args=make_classification(random_state=0),
):
self.name = name
self.construct = construct
self.fit_args = fit_args
self.skip_methods = skip_methods
# For the following meta estimators we check for the existence of relevant
# methods only if the sub estimator also contains them. Any methods that
# are implemented in the meta estimator themselves and are not dependent
# on the sub estimator are specified in the `skip_methods` parameter.
DELEGATING_METAESTIMATORS = [
DelegatorData("Pipeline", lambda est: Pipeline([("est", est)])),
DelegatorData(
"GridSearchCV",
lambda est: GridSearchCV(est, param_grid={"param": [5]}, cv=2),
skip_methods=["score"],
),
DelegatorData(
"RandomizedSearchCV",
lambda est: RandomizedSearchCV(
est, param_distributions={"param": [5]}, cv=2, n_iter=1
),
skip_methods=["score"],
),
DelegatorData("RFE", RFE, skip_methods=["transform", "inverse_transform"]),
DelegatorData(
"RFECV", RFECV, skip_methods=["transform", "inverse_transform", "score"]
),
DelegatorData(
"BaggingClassifier",
BaggingClassifier,
skip_methods=[
"transform",
"inverse_transform",
"score",
"predict_proba",
"predict_log_proba",
"predict",
],
),
DelegatorData(
"SelfTrainingClassifier",
lambda est: SelfTrainingClassifier(est),
skip_methods=["transform", "inverse_transform", "predict_proba"],
),
]
def test_metaestimator_delegation():
# Ensures specified metaestimators have methods iff subestimator does
def hides(method):
@property
def wrapper(obj):
if obj.hidden_method == method.__name__:
raise AttributeError("%r is hidden" % obj.hidden_method)
return functools.partial(method, obj)
return wrapper
class SubEstimator(BaseEstimator):
def __init__(self, param=1, hidden_method=None):
self.param = param
self.hidden_method = hidden_method
def fit(self, X, y=None, *args, **kwargs):
self.coef_ = np.arange(X.shape[1])
self.classes_ = []
return True
def _check_fit(self):
check_is_fitted(self)
@hides
def inverse_transform(self, X, *args, **kwargs):
self._check_fit()
return X
@hides
def transform(self, X, *args, **kwargs):
self._check_fit()
return X
@hides
def predict(self, X, *args, **kwargs):
self._check_fit()
return np.ones(X.shape[0])
@hides
def predict_proba(self, X, *args, **kwargs):
self._check_fit()
return np.ones(X.shape[0])
@hides
def predict_log_proba(self, X, *args, **kwargs):
self._check_fit()
return np.ones(X.shape[0])
@hides
def decision_function(self, X, *args, **kwargs):
self._check_fit()
return np.ones(X.shape[0])
@hides
def score(self, X, y, *args, **kwargs):
self._check_fit()
return 1.0
methods = [
k
for k in SubEstimator.__dict__.keys()
if not k.startswith("_") and not k.startswith("fit")
]
methods.sort()
for delegator_data in DELEGATING_METAESTIMATORS:
delegate = SubEstimator()
delegator = delegator_data.construct(delegate)
for method in methods:
if method in delegator_data.skip_methods:
continue
assert hasattr(delegate, method)
assert hasattr(
delegator, method
), "%s does not have method %r when its delegate does" % (
delegator_data.name,
method,
)
# delegation before fit raises a NotFittedError
if method == "score":
with pytest.raises(NotFittedError):
getattr(delegator, method)(
delegator_data.fit_args[0], delegator_data.fit_args[1]
)
else:
with pytest.raises(NotFittedError):
getattr(delegator, method)(delegator_data.fit_args[0])
delegator.fit(*delegator_data.fit_args)
for method in methods:
if method in delegator_data.skip_methods:
continue
# smoke test delegation
if method == "score":
getattr(delegator, method)(
delegator_data.fit_args[0], delegator_data.fit_args[1]
)
else:
getattr(delegator, method)(delegator_data.fit_args[0])
for method in methods:
if method in delegator_data.skip_methods:
continue
delegate = SubEstimator(hidden_method=method)
delegator = delegator_data.construct(delegate)
assert not hasattr(delegate, method)
assert not hasattr(
delegator, method
), "%s has method %r when its delegate does not" % (
delegator_data.name,
method,
)
def _get_instance_with_pipeline(meta_estimator, init_params):
"""Given a single meta-estimator instance, generate an instance with a pipeline"""
if {"estimator", "base_estimator", "regressor"} & init_params:
if is_regressor(meta_estimator):
estimator = make_pipeline(TfidfVectorizer(), Ridge())
param_grid = {"ridge__alpha": [0.1, 1.0]}
else:
estimator = make_pipeline(TfidfVectorizer(), LogisticRegression())
param_grid = {"logisticregression__C": [0.1, 1.0]}
if init_params.intersection(
{"param_grid", "param_distributions"}
): # SearchCV estimators
extra_params = {"n_iter": 2} if "n_iter" in init_params else {}
return type(meta_estimator)(estimator, param_grid, **extra_params)
else:
return type(meta_estimator)(estimator)
if "transformer_list" in init_params:
# FeatureUnion
transformer_list = [
("trans1", make_pipeline(TfidfVectorizer(), MaxAbsScaler())),
(
"trans2",
make_pipeline(TfidfVectorizer(), StandardScaler(with_mean=False)),
),
]
return type(meta_estimator)(transformer_list)
if "estimators" in init_params:
# stacking, voting
if is_regressor(meta_estimator):
estimator = [
("est1", make_pipeline(TfidfVectorizer(), Ridge(alpha=0.1))),
("est2", make_pipeline(TfidfVectorizer(), Ridge(alpha=1))),
]
else:
estimator = [
(
"est1",
make_pipeline(TfidfVectorizer(), LogisticRegression(C=0.1)),
),
("est2", make_pipeline(TfidfVectorizer(), LogisticRegression(C=1))),
]
return type(meta_estimator)(estimator)
def _generate_meta_estimator_instances_with_pipeline():
"""Generate instances of meta-estimators fed with a pipeline
Are considered meta-estimators all estimators accepting one of "estimator",
"base_estimator" or "estimators".
"""
print("estimators: ", len(all_estimators()))
for _, Estimator in sorted(all_estimators()):
sig = set(signature(Estimator).parameters)
print("\n", Estimator.__name__, sig)
if not sig.intersection(
{
"estimator",
"base_estimator",
"regressor",
"transformer_list",
"estimators",
}
):
continue
with suppress(SkipTest):
for meta_estimator in _construct_instances(Estimator):
print(meta_estimator)
yield _get_instance_with_pipeline(meta_estimator, sig)
# TODO: remove data validation for the following estimators
# They should be able to work on any data and delegate data validation to
# their inner estimator(s).
DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE = [
"AdaBoostClassifier",
"AdaBoostRegressor",
"BaggingClassifier",
"BaggingRegressor",
"ClassifierChain", # data validation is necessary
"FrozenEstimator", # this estimator cannot be tested like others.
"IterativeImputer",
"OneVsOneClassifier", # input validation can't be avoided
"RANSACRegressor",
"RFE",
"RFECV",
"RegressorChain", # data validation is necessary
"SelfTrainingClassifier",
"SequentialFeatureSelector", # not applicable (2D data mandatory)
]
DATA_VALIDATION_META_ESTIMATORS = [
est
for est in _generate_meta_estimator_instances_with_pipeline()
if est.__class__.__name__ not in DATA_VALIDATION_META_ESTIMATORS_TO_IGNORE
]
def _get_meta_estimator_id(estimator):
return estimator.__class__.__name__
@pytest.mark.parametrize(
"estimator", DATA_VALIDATION_META_ESTIMATORS, ids=_get_meta_estimator_id
)
def test_meta_estimators_delegate_data_validation(estimator):
# Check that meta-estimators delegate data validation to the inner
# estimator(s).
rng = np.random.RandomState(0)
set_random_state(estimator)
n_samples = 30
X = rng.choice(np.array(["aa", "bb", "cc"], dtype=object), size=n_samples)
if is_regressor(estimator):
y = rng.normal(size=n_samples)
else:
y = rng.randint(3, size=n_samples)
# We convert to lists to make sure it works on array-like
X = _enforce_estimator_tags_X(estimator, X).tolist()
y = _enforce_estimator_tags_y(estimator, y).tolist()
# Calling fit should not raise any data validation exception since X is a
# valid input datastructure for the first step of the pipeline passed as
# base estimator to the meta estimator.
estimator.fit(X, y)
# n_features_in_ should not be defined since data is not tabular data.
assert not hasattr(estimator, "n_features_in_")