spam-classifier
/
venv
/lib
/python3.11
/site-packages
/pandas
/tests
/arithmetic
/test_timedelta64.py
# Arithmetic tests for DataFrame/Series/Index/Array classes that should | |
# behave identically. | |
from datetime import ( | |
datetime, | |
timedelta, | |
) | |
import numpy as np | |
import pytest | |
from pandas.errors import ( | |
OutOfBoundsDatetime, | |
PerformanceWarning, | |
) | |
import pandas as pd | |
from pandas import ( | |
DataFrame, | |
DatetimeIndex, | |
Index, | |
NaT, | |
Series, | |
Timedelta, | |
TimedeltaIndex, | |
Timestamp, | |
offsets, | |
timedelta_range, | |
) | |
import pandas._testing as tm | |
from pandas.core.arrays import NumpyExtensionArray | |
from pandas.tests.arithmetic.common import ( | |
assert_invalid_addsub_type, | |
assert_invalid_comparison, | |
get_upcast_box, | |
) | |
def assert_dtype(obj, expected_dtype): | |
""" | |
Helper to check the dtype for a Series, Index, or single-column DataFrame. | |
""" | |
dtype = tm.get_dtype(obj) | |
assert dtype == expected_dtype | |
def get_expected_name(box, names): | |
if box is DataFrame: | |
# Since we are operating with a DataFrame and a non-DataFrame, | |
# the non-DataFrame is cast to Series and its name ignored. | |
exname = names[0] | |
elif box in [tm.to_array, pd.array]: | |
exname = names[1] | |
else: | |
exname = names[2] | |
return exname | |
# ------------------------------------------------------------------ | |
# Timedelta64[ns] dtype Comparisons | |
class TestTimedelta64ArrayLikeComparisons: | |
# Comparison tests for timedelta64[ns] vectors fully parametrized over | |
# DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all comparison | |
# tests will eventually end up here. | |
def test_compare_timedelta64_zerodim(self, box_with_array): | |
# GH#26689 should unbox when comparing with zerodim array | |
box = box_with_array | |
xbox = box_with_array if box_with_array not in [Index, pd.array] else np.ndarray | |
tdi = timedelta_range("2h", periods=4) | |
other = np.array(tdi.to_numpy()[0]) | |
tdi = tm.box_expected(tdi, box) | |
res = tdi <= other | |
expected = np.array([True, False, False, False]) | |
expected = tm.box_expected(expected, xbox) | |
tm.assert_equal(res, expected) | |
def test_compare_timedeltalike_scalar(self, box_with_array, td_scalar): | |
# regression test for GH#5963 | |
box = box_with_array | |
xbox = box if box not in [Index, pd.array] else np.ndarray | |
ser = Series([timedelta(days=1), timedelta(days=2)]) | |
ser = tm.box_expected(ser, box) | |
actual = ser > td_scalar | |
expected = Series([False, True]) | |
expected = tm.box_expected(expected, xbox) | |
tm.assert_equal(actual, expected) | |
def test_td64_comparisons_invalid(self, box_with_array, invalid): | |
# GH#13624 for str | |
box = box_with_array | |
rng = timedelta_range("1 days", periods=10) | |
obj = tm.box_expected(rng, box) | |
assert_invalid_comparison(obj, invalid, box) | |
def test_td64arr_cmp_arraylike_invalid(self, other, box_with_array): | |
# We don't parametrize this over box_with_array because listlike | |
# other plays poorly with assert_invalid_comparison reversed checks | |
rng = timedelta_range("1 days", periods=10)._data | |
rng = tm.box_expected(rng, box_with_array) | |
assert_invalid_comparison(rng, other, box_with_array) | |
def test_td64arr_cmp_mixed_invalid(self): | |
rng = timedelta_range("1 days", periods=5)._data | |
other = np.array([0, 1, 2, rng[3], Timestamp("2021-01-01")]) | |
result = rng == other | |
expected = np.array([False, False, False, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = rng != other | |
tm.assert_numpy_array_equal(result, ~expected) | |
msg = "Invalid comparison between|Cannot compare type|not supported between" | |
with pytest.raises(TypeError, match=msg): | |
rng < other | |
with pytest.raises(TypeError, match=msg): | |
rng > other | |
with pytest.raises(TypeError, match=msg): | |
rng <= other | |
with pytest.raises(TypeError, match=msg): | |
rng >= other | |
class TestTimedelta64ArrayComparisons: | |
# TODO: All of these need to be parametrized over box | |
def test_comp_nat(self, dtype): | |
left = TimedeltaIndex([Timedelta("1 days"), NaT, Timedelta("3 days")]) | |
right = TimedeltaIndex([NaT, NaT, Timedelta("3 days")]) | |
lhs, rhs = left, right | |
if dtype is object: | |
lhs, rhs = left.astype(object), right.astype(object) | |
result = rhs == lhs | |
expected = np.array([False, False, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = rhs != lhs | |
expected = np.array([True, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
expected = np.array([False, False, False]) | |
tm.assert_numpy_array_equal(lhs == NaT, expected) | |
tm.assert_numpy_array_equal(NaT == rhs, expected) | |
expected = np.array([True, True, True]) | |
tm.assert_numpy_array_equal(lhs != NaT, expected) | |
tm.assert_numpy_array_equal(NaT != lhs, expected) | |
expected = np.array([False, False, False]) | |
tm.assert_numpy_array_equal(lhs < NaT, expected) | |
tm.assert_numpy_array_equal(NaT > lhs, expected) | |
def test_comparisons_nat(self, idx2): | |
idx1 = TimedeltaIndex( | |
[ | |
"1 day", | |
NaT, | |
"1 day 00:00:01", | |
NaT, | |
"1 day 00:00:01", | |
"5 day 00:00:03", | |
] | |
) | |
# Check pd.NaT is handles as the same as np.nan | |
result = idx1 < idx2 | |
expected = np.array([True, False, False, False, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = idx2 > idx1 | |
expected = np.array([True, False, False, False, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = idx1 <= idx2 | |
expected = np.array([True, False, False, False, True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = idx2 >= idx1 | |
expected = np.array([True, False, False, False, True, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = idx1 == idx2 | |
expected = np.array([False, False, False, False, False, True]) | |
tm.assert_numpy_array_equal(result, expected) | |
result = idx1 != idx2 | |
expected = np.array([True, True, True, True, True, False]) | |
tm.assert_numpy_array_equal(result, expected) | |
# TODO: better name | |
def test_comparisons_coverage(self): | |
rng = timedelta_range("1 days", periods=10) | |
result = rng < rng[3] | |
expected = np.array([True, True, True] + [False] * 7) | |
tm.assert_numpy_array_equal(result, expected) | |
result = rng == list(rng) | |
exp = rng == rng | |
tm.assert_numpy_array_equal(result, exp) | |
# ------------------------------------------------------------------ | |
# Timedelta64[ns] dtype Arithmetic Operations | |
class TestTimedelta64ArithmeticUnsorted: | |
# Tests moved from type-specific test files but not | |
# yet sorted/parametrized/de-duplicated | |
def test_ufunc_coercions(self): | |
# normal ops are also tested in tseries/test_timedeltas.py | |
idx = TimedeltaIndex(["2h", "4h", "6h", "8h", "10h"], freq="2h", name="x") | |
for result in [idx * 2, np.multiply(idx, 2)]: | |
assert isinstance(result, TimedeltaIndex) | |
exp = TimedeltaIndex(["4h", "8h", "12h", "16h", "20h"], freq="4h", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "4h" | |
for result in [idx / 2, np.divide(idx, 2)]: | |
assert isinstance(result, TimedeltaIndex) | |
exp = TimedeltaIndex(["1h", "2h", "3h", "4h", "5h"], freq="h", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "h" | |
for result in [-idx, np.negative(idx)]: | |
assert isinstance(result, TimedeltaIndex) | |
exp = TimedeltaIndex( | |
["-2h", "-4h", "-6h", "-8h", "-10h"], freq="-2h", name="x" | |
) | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "-2h" | |
idx = TimedeltaIndex(["-2h", "-1h", "0h", "1h", "2h"], freq="h", name="x") | |
for result in [abs(idx), np.absolute(idx)]: | |
assert isinstance(result, TimedeltaIndex) | |
exp = TimedeltaIndex(["2h", "1h", "0h", "1h", "2h"], freq=None, name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq is None | |
def test_subtraction_ops(self): | |
# with datetimes/timedelta and tdi/dti | |
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") | |
dti = pd.date_range("20130101", periods=3, name="bar") | |
td = Timedelta("1 days") | |
dt = Timestamp("20130101") | |
msg = "cannot subtract a datelike from a TimedeltaArray" | |
with pytest.raises(TypeError, match=msg): | |
tdi - dt | |
with pytest.raises(TypeError, match=msg): | |
tdi - dti | |
msg = r"unsupported operand type\(s\) for -" | |
with pytest.raises(TypeError, match=msg): | |
td - dt | |
msg = "(bad|unsupported) operand type for unary" | |
with pytest.raises(TypeError, match=msg): | |
td - dti | |
result = dt - dti | |
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"], name="bar") | |
tm.assert_index_equal(result, expected) | |
result = dti - dt | |
expected = TimedeltaIndex(["0 days", "1 days", "2 days"], name="bar") | |
tm.assert_index_equal(result, expected) | |
result = tdi - td | |
expected = TimedeltaIndex(["0 days", NaT, "1 days"], name="foo") | |
tm.assert_index_equal(result, expected) | |
result = td - tdi | |
expected = TimedeltaIndex(["0 days", NaT, "-1 days"], name="foo") | |
tm.assert_index_equal(result, expected) | |
result = dti - td | |
expected = DatetimeIndex( | |
["20121231", "20130101", "20130102"], dtype="M8[ns]", freq="D", name="bar" | |
) | |
tm.assert_index_equal(result, expected) | |
result = dt - tdi | |
expected = DatetimeIndex( | |
["20121231", NaT, "20121230"], dtype="M8[ns]", name="foo" | |
) | |
tm.assert_index_equal(result, expected) | |
def test_subtraction_ops_with_tz(self, box_with_array): | |
# check that dt/dti subtraction ops with tz are validated | |
dti = pd.date_range("20130101", periods=3) | |
dti = tm.box_expected(dti, box_with_array) | |
ts = Timestamp("20130101") | |
dt = ts.to_pydatetime() | |
dti_tz = pd.date_range("20130101", periods=3).tz_localize("US/Eastern") | |
dti_tz = tm.box_expected(dti_tz, box_with_array) | |
ts_tz = Timestamp("20130101").tz_localize("US/Eastern") | |
ts_tz2 = Timestamp("20130101").tz_localize("CET") | |
dt_tz = ts_tz.to_pydatetime() | |
td = Timedelta("1 days") | |
def _check(result, expected): | |
assert result == expected | |
assert isinstance(result, Timedelta) | |
# scalars | |
result = ts - ts | |
expected = Timedelta("0 days") | |
_check(result, expected) | |
result = dt_tz - ts_tz | |
expected = Timedelta("0 days") | |
_check(result, expected) | |
result = ts_tz - dt_tz | |
expected = Timedelta("0 days") | |
_check(result, expected) | |
# tz mismatches | |
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects." | |
with pytest.raises(TypeError, match=msg): | |
dt_tz - ts | |
msg = "can't subtract offset-naive and offset-aware datetimes" | |
with pytest.raises(TypeError, match=msg): | |
dt_tz - dt | |
msg = "can't subtract offset-naive and offset-aware datetimes" | |
with pytest.raises(TypeError, match=msg): | |
dt - dt_tz | |
msg = "Cannot subtract tz-naive and tz-aware datetime-like objects." | |
with pytest.raises(TypeError, match=msg): | |
ts - dt_tz | |
with pytest.raises(TypeError, match=msg): | |
ts_tz2 - ts | |
with pytest.raises(TypeError, match=msg): | |
ts_tz2 - dt | |
msg = "Cannot subtract tz-naive and tz-aware" | |
# with dti | |
with pytest.raises(TypeError, match=msg): | |
dti - ts_tz | |
with pytest.raises(TypeError, match=msg): | |
dti_tz - ts | |
result = dti_tz - dt_tz | |
expected = TimedeltaIndex(["0 days", "1 days", "2 days"]) | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(result, expected) | |
result = dt_tz - dti_tz | |
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"]) | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(result, expected) | |
result = dti_tz - ts_tz | |
expected = TimedeltaIndex(["0 days", "1 days", "2 days"]) | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(result, expected) | |
result = ts_tz - dti_tz | |
expected = TimedeltaIndex(["0 days", "-1 days", "-2 days"]) | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(result, expected) | |
result = td - td | |
expected = Timedelta("0 days") | |
_check(result, expected) | |
result = dti_tz - td | |
expected = DatetimeIndex( | |
["20121231", "20130101", "20130102"], tz="US/Eastern" | |
).as_unit("ns") | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(result, expected) | |
def test_dti_tdi_numeric_ops(self): | |
# These are normally union/diff set-like ops | |
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") | |
dti = pd.date_range("20130101", periods=3, name="bar") | |
result = tdi - tdi | |
expected = TimedeltaIndex(["0 days", NaT, "0 days"], name="foo") | |
tm.assert_index_equal(result, expected) | |
result = tdi + tdi | |
expected = TimedeltaIndex(["2 days", NaT, "4 days"], name="foo") | |
tm.assert_index_equal(result, expected) | |
result = dti - tdi # name will be reset | |
expected = DatetimeIndex(["20121231", NaT, "20130101"], dtype="M8[ns]") | |
tm.assert_index_equal(result, expected) | |
def test_addition_ops(self): | |
# with datetimes/timedelta and tdi/dti | |
tdi = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") | |
dti = pd.date_range("20130101", periods=3, name="bar") | |
td = Timedelta("1 days") | |
dt = Timestamp("20130101") | |
result = tdi + dt | |
expected = DatetimeIndex( | |
["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo" | |
) | |
tm.assert_index_equal(result, expected) | |
result = dt + tdi | |
expected = DatetimeIndex( | |
["20130102", NaT, "20130103"], dtype="M8[ns]", name="foo" | |
) | |
tm.assert_index_equal(result, expected) | |
result = td + tdi | |
expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo") | |
tm.assert_index_equal(result, expected) | |
result = tdi + td | |
expected = TimedeltaIndex(["2 days", NaT, "3 days"], name="foo") | |
tm.assert_index_equal(result, expected) | |
# unequal length | |
msg = "cannot add indices of unequal length" | |
with pytest.raises(ValueError, match=msg): | |
tdi + dti[0:1] | |
with pytest.raises(ValueError, match=msg): | |
tdi[0:1] + dti | |
# random indexes | |
msg = "Addition/subtraction of integers and integer-arrays" | |
with pytest.raises(TypeError, match=msg): | |
tdi + Index([1, 2, 3], dtype=np.int64) | |
# this is a union! | |
# FIXME: don't leave commented-out | |
# pytest.raises(TypeError, lambda : Index([1,2,3]) + tdi) | |
result = tdi + dti # name will be reset | |
expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]") | |
tm.assert_index_equal(result, expected) | |
result = dti + tdi # name will be reset | |
expected = DatetimeIndex(["20130102", NaT, "20130105"], dtype="M8[ns]") | |
tm.assert_index_equal(result, expected) | |
result = dt + td | |
expected = Timestamp("20130102") | |
assert result == expected | |
result = td + dt | |
expected = Timestamp("20130102") | |
assert result == expected | |
# TODO: Needs more informative name, probably split up into | |
# more targeted tests | |
def test_timedelta(self, freq): | |
index = pd.date_range("1/1/2000", periods=50, freq=freq) | |
shifted = index + timedelta(1) | |
back = shifted + timedelta(-1) | |
back = back._with_freq("infer") | |
tm.assert_index_equal(index, back) | |
if freq == "D": | |
expected = pd.tseries.offsets.Day(1) | |
assert index.freq == expected | |
assert shifted.freq == expected | |
assert back.freq == expected | |
else: # freq == 'B' | |
assert index.freq == pd.tseries.offsets.BusinessDay(1) | |
assert shifted.freq is None | |
assert back.freq == pd.tseries.offsets.BusinessDay(1) | |
result = index - timedelta(1) | |
expected = index + timedelta(-1) | |
tm.assert_index_equal(result, expected) | |
def test_timedelta_tick_arithmetic(self): | |
# GH#4134, buggy with timedeltas | |
rng = pd.date_range("2013", "2014") | |
s = Series(rng) | |
result1 = rng - offsets.Hour(1) | |
result2 = DatetimeIndex(s - np.timedelta64(100000000)) | |
result3 = rng - np.timedelta64(100000000) | |
result4 = DatetimeIndex(s - offsets.Hour(1)) | |
assert result1.freq == rng.freq | |
result1 = result1._with_freq(None) | |
tm.assert_index_equal(result1, result4) | |
assert result3.freq == rng.freq | |
result3 = result3._with_freq(None) | |
tm.assert_index_equal(result2, result3) | |
def test_tda_add_sub_index(self): | |
# Check that TimedeltaArray defers to Index on arithmetic ops | |
tdi = TimedeltaIndex(["1 days", NaT, "2 days"]) | |
tda = tdi.array | |
dti = pd.date_range("1999-12-31", periods=3, freq="D") | |
result = tda + dti | |
expected = tdi + dti | |
tm.assert_index_equal(result, expected) | |
result = tda + tdi | |
expected = tdi + tdi | |
tm.assert_index_equal(result, expected) | |
result = tda - tdi | |
expected = tdi - tdi | |
tm.assert_index_equal(result, expected) | |
def test_tda_add_dt64_object_array(self, box_with_array, tz_naive_fixture): | |
# Result should be cast back to DatetimeArray | |
box = box_with_array | |
dti = pd.date_range("2016-01-01", periods=3, tz=tz_naive_fixture) | |
dti = dti._with_freq(None) | |
tdi = dti - dti | |
obj = tm.box_expected(tdi, box) | |
other = tm.box_expected(dti, box) | |
with tm.assert_produces_warning(PerformanceWarning): | |
result = obj + other.astype(object) | |
tm.assert_equal(result, other.astype(object)) | |
# ------------------------------------------------------------- | |
# Binary operations TimedeltaIndex and timedelta-like | |
def test_tdi_iadd_timedeltalike(self, two_hours, box_with_array): | |
# only test adding/sub offsets as + is now numeric | |
rng = timedelta_range("1 days", "10 days") | |
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D") | |
rng = tm.box_expected(rng, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
orig_rng = rng | |
rng += two_hours | |
tm.assert_equal(rng, expected) | |
if box_with_array is not Index: | |
# Check that operation is actually inplace | |
tm.assert_equal(orig_rng, expected) | |
def test_tdi_isub_timedeltalike(self, two_hours, box_with_array): | |
# only test adding/sub offsets as - is now numeric | |
rng = timedelta_range("1 days", "10 days") | |
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00") | |
rng = tm.box_expected(rng, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
orig_rng = rng | |
rng -= two_hours | |
tm.assert_equal(rng, expected) | |
if box_with_array is not Index: | |
# Check that operation is actually inplace | |
tm.assert_equal(orig_rng, expected) | |
# ------------------------------------------------------------- | |
def test_tdi_ops_attributes(self): | |
rng = timedelta_range("2 days", periods=5, freq="2D", name="x") | |
result = rng + 1 * rng.freq | |
exp = timedelta_range("4 days", periods=5, freq="2D", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "2D" | |
result = rng - 2 * rng.freq | |
exp = timedelta_range("-2 days", periods=5, freq="2D", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "2D" | |
result = rng * 2 | |
exp = timedelta_range("4 days", periods=5, freq="4D", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "4D" | |
result = rng / 2 | |
exp = timedelta_range("1 days", periods=5, freq="D", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "D" | |
result = -rng | |
exp = timedelta_range("-2 days", periods=5, freq="-2D", name="x") | |
tm.assert_index_equal(result, exp) | |
assert result.freq == "-2D" | |
rng = timedelta_range("-2 days", periods=5, freq="D", name="x") | |
result = abs(rng) | |
exp = TimedeltaIndex( | |
["2 days", "1 days", "0 days", "1 days", "2 days"], name="x" | |
) | |
tm.assert_index_equal(result, exp) | |
assert result.freq is None | |
class TestAddSubNaTMasking: | |
# TODO: parametrize over boxes | |
def test_tdarr_add_timestamp_nat_masking(self, box_with_array, str_ts): | |
# GH#17991 checking for overflow-masking with NaT | |
tdinat = pd.to_timedelta(["24658 days 11:15:00", "NaT"]) | |
tdobj = tm.box_expected(tdinat, box_with_array) | |
ts = Timestamp(str_ts) | |
ts_variants = [ | |
ts, | |
ts.to_pydatetime(), | |
ts.to_datetime64().astype("datetime64[ns]"), | |
ts.to_datetime64().astype("datetime64[D]"), | |
] | |
for variant in ts_variants: | |
res = tdobj + variant | |
if box_with_array is DataFrame: | |
assert res.iloc[1, 1] is NaT | |
else: | |
assert res[1] is NaT | |
def test_tdi_add_overflow(self): | |
# See GH#14068 | |
# preliminary test scalar analogue of vectorized tests below | |
# TODO: Make raised error message more informative and test | |
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"): | |
pd.to_timedelta(106580, "D") + Timestamp("2000") | |
with pytest.raises(OutOfBoundsDatetime, match="10155196800000000000"): | |
Timestamp("2000") + pd.to_timedelta(106580, "D") | |
_NaT = NaT._value + 1 | |
msg = "Overflow in int64 addition" | |
with pytest.raises(OverflowError, match=msg): | |
pd.to_timedelta([106580], "D") + Timestamp("2000") | |
with pytest.raises(OverflowError, match=msg): | |
Timestamp("2000") + pd.to_timedelta([106580], "D") | |
with pytest.raises(OverflowError, match=msg): | |
pd.to_timedelta([_NaT]) - Timedelta("1 days") | |
with pytest.raises(OverflowError, match=msg): | |
pd.to_timedelta(["5 days", _NaT]) - Timedelta("1 days") | |
with pytest.raises(OverflowError, match=msg): | |
( | |
pd.to_timedelta([_NaT, "5 days", "1 hours"]) | |
- pd.to_timedelta(["7 seconds", _NaT, "4 hours"]) | |
) | |
# These should not overflow! | |
exp = TimedeltaIndex([NaT]) | |
result = pd.to_timedelta([NaT]) - Timedelta("1 days") | |
tm.assert_index_equal(result, exp) | |
exp = TimedeltaIndex(["4 days", NaT]) | |
result = pd.to_timedelta(["5 days", NaT]) - Timedelta("1 days") | |
tm.assert_index_equal(result, exp) | |
exp = TimedeltaIndex([NaT, NaT, "5 hours"]) | |
result = pd.to_timedelta([NaT, "5 days", "1 hours"]) + pd.to_timedelta( | |
["7 seconds", NaT, "4 hours"] | |
) | |
tm.assert_index_equal(result, exp) | |
class TestTimedeltaArraylikeAddSubOps: | |
# Tests for timedelta64[ns] __add__, __sub__, __radd__, __rsub__ | |
def test_sub_nat_retain_unit(self): | |
ser = pd.to_timedelta(Series(["00:00:01"])).astype("m8[s]") | |
result = ser - NaT | |
expected = Series([NaT], dtype="m8[s]") | |
tm.assert_series_equal(result, expected) | |
# TODO: moved from tests.indexes.timedeltas.test_arithmetic; needs | |
# parametrization+de-duplication | |
def test_timedelta_ops_with_missing_values(self): | |
# setup | |
s1 = pd.to_timedelta(Series(["00:00:01"])) | |
s2 = pd.to_timedelta(Series(["00:00:02"])) | |
sn = pd.to_timedelta(Series([NaT], dtype="m8[ns]")) | |
df1 = DataFrame(["00:00:01"]).apply(pd.to_timedelta) | |
df2 = DataFrame(["00:00:02"]).apply(pd.to_timedelta) | |
dfn = DataFrame([NaT._value]).apply(pd.to_timedelta) | |
scalar1 = pd.to_timedelta("00:00:01") | |
scalar2 = pd.to_timedelta("00:00:02") | |
timedelta_NaT = pd.to_timedelta("NaT") | |
actual = scalar1 + scalar1 | |
assert actual == scalar2 | |
actual = scalar2 - scalar1 | |
assert actual == scalar1 | |
actual = s1 + s1 | |
tm.assert_series_equal(actual, s2) | |
actual = s2 - s1 | |
tm.assert_series_equal(actual, s1) | |
actual = s1 + scalar1 | |
tm.assert_series_equal(actual, s2) | |
actual = scalar1 + s1 | |
tm.assert_series_equal(actual, s2) | |
actual = s2 - scalar1 | |
tm.assert_series_equal(actual, s1) | |
actual = -scalar1 + s2 | |
tm.assert_series_equal(actual, s1) | |
actual = s1 + timedelta_NaT | |
tm.assert_series_equal(actual, sn) | |
actual = timedelta_NaT + s1 | |
tm.assert_series_equal(actual, sn) | |
actual = s1 - timedelta_NaT | |
tm.assert_series_equal(actual, sn) | |
actual = -timedelta_NaT + s1 | |
tm.assert_series_equal(actual, sn) | |
msg = "unsupported operand type" | |
with pytest.raises(TypeError, match=msg): | |
s1 + np.nan | |
with pytest.raises(TypeError, match=msg): | |
np.nan + s1 | |
with pytest.raises(TypeError, match=msg): | |
s1 - np.nan | |
with pytest.raises(TypeError, match=msg): | |
-np.nan + s1 | |
actual = s1 + NaT | |
tm.assert_series_equal(actual, sn) | |
actual = s2 - NaT | |
tm.assert_series_equal(actual, sn) | |
actual = s1 + df1 | |
tm.assert_frame_equal(actual, df2) | |
actual = s2 - df1 | |
tm.assert_frame_equal(actual, df1) | |
actual = df1 + s1 | |
tm.assert_frame_equal(actual, df2) | |
actual = df2 - s1 | |
tm.assert_frame_equal(actual, df1) | |
actual = df1 + df1 | |
tm.assert_frame_equal(actual, df2) | |
actual = df2 - df1 | |
tm.assert_frame_equal(actual, df1) | |
actual = df1 + scalar1 | |
tm.assert_frame_equal(actual, df2) | |
actual = df2 - scalar1 | |
tm.assert_frame_equal(actual, df1) | |
actual = df1 + timedelta_NaT | |
tm.assert_frame_equal(actual, dfn) | |
actual = df1 - timedelta_NaT | |
tm.assert_frame_equal(actual, dfn) | |
msg = "cannot subtract a datelike from|unsupported operand type" | |
with pytest.raises(TypeError, match=msg): | |
df1 + np.nan | |
with pytest.raises(TypeError, match=msg): | |
df1 - np.nan | |
actual = df1 + NaT # NaT is datetime, not timedelta | |
tm.assert_frame_equal(actual, dfn) | |
actual = df1 - NaT | |
tm.assert_frame_equal(actual, dfn) | |
# TODO: moved from tests.series.test_operators, needs splitting, cleanup, | |
# de-duplication, box-parametrization... | |
def test_operators_timedelta64(self): | |
# series ops | |
v1 = pd.date_range("2012-1-1", periods=3, freq="D") | |
v2 = pd.date_range("2012-1-2", periods=3, freq="D") | |
rs = Series(v2) - Series(v1) | |
xp = Series(1e9 * 3600 * 24, rs.index).astype("int64").astype("timedelta64[ns]") | |
tm.assert_series_equal(rs, xp) | |
assert rs.dtype == "timedelta64[ns]" | |
df = DataFrame({"A": v1}) | |
td = Series([timedelta(days=i) for i in range(3)]) | |
assert td.dtype == "timedelta64[ns]" | |
# series on the rhs | |
result = df["A"] - df["A"].shift() | |
assert result.dtype == "timedelta64[ns]" | |
result = df["A"] + td | |
assert result.dtype == "M8[ns]" | |
# scalar Timestamp on rhs | |
maxa = df["A"].max() | |
assert isinstance(maxa, Timestamp) | |
resultb = df["A"] - df["A"].max() | |
assert resultb.dtype == "timedelta64[ns]" | |
# timestamp on lhs | |
result = resultb + df["A"] | |
values = [Timestamp("20111230"), Timestamp("20120101"), Timestamp("20120103")] | |
expected = Series(values, dtype="M8[ns]", name="A") | |
tm.assert_series_equal(result, expected) | |
# datetimes on rhs | |
result = df["A"] - datetime(2001, 1, 1) | |
expected = Series([timedelta(days=4017 + i) for i in range(3)], name="A") | |
tm.assert_series_equal(result, expected) | |
assert result.dtype == "m8[ns]" | |
d = datetime(2001, 1, 1, 3, 4) | |
resulta = df["A"] - d | |
assert resulta.dtype == "m8[ns]" | |
# roundtrip | |
resultb = resulta + d | |
tm.assert_series_equal(df["A"], resultb) | |
# timedeltas on rhs | |
td = timedelta(days=1) | |
resulta = df["A"] + td | |
resultb = resulta - td | |
tm.assert_series_equal(resultb, df["A"]) | |
assert resultb.dtype == "M8[ns]" | |
# roundtrip | |
td = timedelta(minutes=5, seconds=3) | |
resulta = df["A"] + td | |
resultb = resulta - td | |
tm.assert_series_equal(df["A"], resultb) | |
assert resultb.dtype == "M8[ns]" | |
# inplace | |
value = rs[2] + np.timedelta64(timedelta(minutes=5, seconds=1)) | |
rs[2] += np.timedelta64(timedelta(minutes=5, seconds=1)) | |
assert rs[2] == value | |
def test_timedelta64_ops_nat(self): | |
# GH 11349 | |
timedelta_series = Series([NaT, Timedelta("1s")]) | |
nat_series_dtype_timedelta = Series([NaT, NaT], dtype="timedelta64[ns]") | |
single_nat_dtype_timedelta = Series([NaT], dtype="timedelta64[ns]") | |
# subtraction | |
tm.assert_series_equal(timedelta_series - NaT, nat_series_dtype_timedelta) | |
tm.assert_series_equal(-NaT + timedelta_series, nat_series_dtype_timedelta) | |
tm.assert_series_equal( | |
timedelta_series - single_nat_dtype_timedelta, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
-single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta | |
) | |
# addition | |
tm.assert_series_equal( | |
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
nat_series_dtype_timedelta + single_nat_dtype_timedelta, | |
nat_series_dtype_timedelta, | |
) | |
tm.assert_series_equal( | |
single_nat_dtype_timedelta + nat_series_dtype_timedelta, | |
nat_series_dtype_timedelta, | |
) | |
tm.assert_series_equal(timedelta_series + NaT, nat_series_dtype_timedelta) | |
tm.assert_series_equal(NaT + timedelta_series, nat_series_dtype_timedelta) | |
tm.assert_series_equal( | |
timedelta_series + single_nat_dtype_timedelta, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
single_nat_dtype_timedelta + timedelta_series, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
nat_series_dtype_timedelta + NaT, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
NaT + nat_series_dtype_timedelta, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
nat_series_dtype_timedelta + single_nat_dtype_timedelta, | |
nat_series_dtype_timedelta, | |
) | |
tm.assert_series_equal( | |
single_nat_dtype_timedelta + nat_series_dtype_timedelta, | |
nat_series_dtype_timedelta, | |
) | |
# multiplication | |
tm.assert_series_equal( | |
nat_series_dtype_timedelta * 1.0, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal( | |
1.0 * nat_series_dtype_timedelta, nat_series_dtype_timedelta | |
) | |
tm.assert_series_equal(timedelta_series * 1, timedelta_series) | |
tm.assert_series_equal(1 * timedelta_series, timedelta_series) | |
tm.assert_series_equal(timedelta_series * 1.5, Series([NaT, Timedelta("1.5s")])) | |
tm.assert_series_equal(1.5 * timedelta_series, Series([NaT, Timedelta("1.5s")])) | |
tm.assert_series_equal(timedelta_series * np.nan, nat_series_dtype_timedelta) | |
tm.assert_series_equal(np.nan * timedelta_series, nat_series_dtype_timedelta) | |
# division | |
tm.assert_series_equal(timedelta_series / 2, Series([NaT, Timedelta("0.5s")])) | |
tm.assert_series_equal(timedelta_series / 2.0, Series([NaT, Timedelta("0.5s")])) | |
tm.assert_series_equal(timedelta_series / np.nan, nat_series_dtype_timedelta) | |
# ------------------------------------------------------------- | |
# Binary operations td64 arraylike and datetime-like | |
def test_td64arr_add_sub_datetimelike_scalar( | |
self, cls, box_with_array, tz_naive_fixture | |
): | |
# GH#11925, GH#29558, GH#23215 | |
tz = tz_naive_fixture | |
dt_scalar = Timestamp("2012-01-01", tz=tz) | |
if cls is datetime: | |
ts = dt_scalar.to_pydatetime() | |
elif cls is np.datetime64: | |
if tz_naive_fixture is not None: | |
pytest.skip(f"{cls} doesn support {tz_naive_fixture}") | |
ts = dt_scalar.to_datetime64() | |
else: | |
ts = dt_scalar | |
tdi = timedelta_range("1 day", periods=3) | |
expected = pd.date_range("2012-01-02", periods=3, tz=tz) | |
tdarr = tm.box_expected(tdi, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(ts + tdarr, expected) | |
tm.assert_equal(tdarr + ts, expected) | |
expected2 = pd.date_range("2011-12-31", periods=3, freq="-1D", tz=tz) | |
expected2 = tm.box_expected(expected2, box_with_array) | |
tm.assert_equal(ts - tdarr, expected2) | |
tm.assert_equal(ts + (-tdarr), expected2) | |
msg = "cannot subtract a datelike" | |
with pytest.raises(TypeError, match=msg): | |
tdarr - ts | |
def test_td64arr_add_datetime64_nat(self, box_with_array): | |
# GH#23215 | |
other = np.datetime64("NaT") | |
tdi = timedelta_range("1 day", periods=3) | |
expected = DatetimeIndex(["NaT", "NaT", "NaT"], dtype="M8[ns]") | |
tdser = tm.box_expected(tdi, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
tm.assert_equal(tdser + other, expected) | |
tm.assert_equal(other + tdser, expected) | |
def test_td64arr_sub_dt64_array(self, box_with_array): | |
dti = pd.date_range("2016-01-01", periods=3) | |
tdi = TimedeltaIndex(["-1 Day"] * 3) | |
dtarr = dti.values | |
expected = DatetimeIndex(dtarr) - tdi | |
tdi = tm.box_expected(tdi, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
msg = "cannot subtract a datelike from" | |
with pytest.raises(TypeError, match=msg): | |
tdi - dtarr | |
# TimedeltaIndex.__rsub__ | |
result = dtarr - tdi | |
tm.assert_equal(result, expected) | |
def test_td64arr_add_dt64_array(self, box_with_array): | |
dti = pd.date_range("2016-01-01", periods=3) | |
tdi = TimedeltaIndex(["-1 Day"] * 3) | |
dtarr = dti.values | |
expected = DatetimeIndex(dtarr) + tdi | |
tdi = tm.box_expected(tdi, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdi + dtarr | |
tm.assert_equal(result, expected) | |
result = dtarr + tdi | |
tm.assert_equal(result, expected) | |
# ------------------------------------------------------------------ | |
# Invalid __add__/__sub__ operations | |
def test_td64arr_sub_periodlike( | |
self, box_with_array, box_with_array2, tdi_freq, pi_freq | |
): | |
# GH#20049 subtracting PeriodIndex should raise TypeError | |
tdi = TimedeltaIndex(["1 hours", "2 hours"], freq=tdi_freq) | |
dti = Timestamp("2018-03-07 17:16:40") + tdi | |
pi = dti.to_period(pi_freq) | |
per = pi[0] | |
tdi = tm.box_expected(tdi, box_with_array) | |
pi = tm.box_expected(pi, box_with_array2) | |
msg = "cannot subtract|unsupported operand type" | |
with pytest.raises(TypeError, match=msg): | |
tdi - pi | |
# GH#13078 subtraction of Period scalar not supported | |
with pytest.raises(TypeError, match=msg): | |
tdi - per | |
def test_td64arr_addsub_numeric_scalar_invalid(self, box_with_array, other): | |
# vector-like others are tested in test_td64arr_add_sub_numeric_arr_invalid | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
tdarr = tm.box_expected(tdser, box_with_array) | |
assert_invalid_addsub_type(tdarr, other) | |
def test_td64arr_addsub_numeric_arr_invalid( | |
self, box_with_array, vec, any_real_numpy_dtype | |
): | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
tdarr = tm.box_expected(tdser, box_with_array) | |
vector = vec.astype(any_real_numpy_dtype) | |
assert_invalid_addsub_type(tdarr, vector) | |
def test_td64arr_add_sub_int(self, box_with_array, one): | |
# Variants of `one` for #19012, deprecated GH#22535 | |
rng = timedelta_range("1 days 09:00:00", freq="h", periods=10) | |
tdarr = tm.box_expected(rng, box_with_array) | |
msg = "Addition/subtraction of integers" | |
assert_invalid_addsub_type(tdarr, one, msg) | |
# TODO: get inplace ops into assert_invalid_addsub_type | |
with pytest.raises(TypeError, match=msg): | |
tdarr += one | |
with pytest.raises(TypeError, match=msg): | |
tdarr -= one | |
def test_td64arr_add_sub_integer_array(self, box_with_array): | |
# GH#19959, deprecated GH#22535 | |
# GH#22696 for DataFrame case, check that we don't dispatch to numpy | |
# implementation, which treats int64 as m8[ns] | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
rng = timedelta_range("1 days 09:00:00", freq="h", periods=3) | |
tdarr = tm.box_expected(rng, box) | |
other = tm.box_expected([4, 3, 2], xbox) | |
msg = "Addition/subtraction of integers and integer-arrays" | |
assert_invalid_addsub_type(tdarr, other, msg) | |
def test_td64arr_addsub_integer_array_no_freq(self, box_with_array): | |
# GH#19959 | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
tdi = TimedeltaIndex(["1 Day", "NaT", "3 Hours"]) | |
tdarr = tm.box_expected(tdi, box) | |
other = tm.box_expected([14, -1, 16], xbox) | |
msg = "Addition/subtraction of integers" | |
assert_invalid_addsub_type(tdarr, other, msg) | |
# ------------------------------------------------------------------ | |
# Operations with timedelta-like others | |
def test_td64arr_add_sub_td64_array(self, box_with_array): | |
box = box_with_array | |
dti = pd.date_range("2016-01-01", periods=3) | |
tdi = dti - dti.shift(1) | |
tdarr = tdi.values | |
expected = 2 * tdi | |
tdi = tm.box_expected(tdi, box) | |
expected = tm.box_expected(expected, box) | |
result = tdi + tdarr | |
tm.assert_equal(result, expected) | |
result = tdarr + tdi | |
tm.assert_equal(result, expected) | |
expected_sub = 0 * tdi | |
result = tdi - tdarr | |
tm.assert_equal(result, expected_sub) | |
result = tdarr - tdi | |
tm.assert_equal(result, expected_sub) | |
def test_td64arr_add_sub_tdi(self, box_with_array, names): | |
# GH#17250 make sure result dtype is correct | |
# GH#19043 make sure names are propagated correctly | |
box = box_with_array | |
exname = get_expected_name(box, names) | |
tdi = TimedeltaIndex(["0 days", "1 day"], name=names[1]) | |
tdi = np.array(tdi) if box in [tm.to_array, pd.array] else tdi | |
ser = Series([Timedelta(hours=3), Timedelta(hours=4)], name=names[0]) | |
expected = Series([Timedelta(hours=3), Timedelta(days=1, hours=4)], name=exname) | |
ser = tm.box_expected(ser, box) | |
expected = tm.box_expected(expected, box) | |
result = tdi + ser | |
tm.assert_equal(result, expected) | |
assert_dtype(result, "timedelta64[ns]") | |
result = ser + tdi | |
tm.assert_equal(result, expected) | |
assert_dtype(result, "timedelta64[ns]") | |
expected = Series( | |
[Timedelta(hours=-3), Timedelta(days=1, hours=-4)], name=exname | |
) | |
expected = tm.box_expected(expected, box) | |
result = tdi - ser | |
tm.assert_equal(result, expected) | |
assert_dtype(result, "timedelta64[ns]") | |
result = ser - tdi | |
tm.assert_equal(result, -expected) | |
assert_dtype(result, "timedelta64[ns]") | |
def test_td64arr_add_sub_td64_nat(self, box_with_array, tdnat): | |
# GH#18808, GH#23320 special handling for timedelta64("NaT") | |
box = box_with_array | |
tdi = TimedeltaIndex([NaT, Timedelta("1s")]) | |
expected = TimedeltaIndex(["NaT"] * 2) | |
obj = tm.box_expected(tdi, box) | |
expected = tm.box_expected(expected, box) | |
result = obj + tdnat | |
tm.assert_equal(result, expected) | |
result = tdnat + obj | |
tm.assert_equal(result, expected) | |
result = obj - tdnat | |
tm.assert_equal(result, expected) | |
result = tdnat - obj | |
tm.assert_equal(result, expected) | |
def test_td64arr_add_timedeltalike(self, two_hours, box_with_array): | |
# only test adding/sub offsets as + is now numeric | |
# GH#10699 for Tick cases | |
box = box_with_array | |
rng = timedelta_range("1 days", "10 days") | |
expected = timedelta_range("1 days 02:00:00", "10 days 02:00:00", freq="D") | |
rng = tm.box_expected(rng, box) | |
expected = tm.box_expected(expected, box) | |
result = rng + two_hours | |
tm.assert_equal(result, expected) | |
result = two_hours + rng | |
tm.assert_equal(result, expected) | |
def test_td64arr_sub_timedeltalike(self, two_hours, box_with_array): | |
# only test adding/sub offsets as - is now numeric | |
# GH#10699 for Tick cases | |
box = box_with_array | |
rng = timedelta_range("1 days", "10 days") | |
expected = timedelta_range("0 days 22:00:00", "9 days 22:00:00") | |
rng = tm.box_expected(rng, box) | |
expected = tm.box_expected(expected, box) | |
result = rng - two_hours | |
tm.assert_equal(result, expected) | |
result = two_hours - rng | |
tm.assert_equal(result, -expected) | |
# ------------------------------------------------------------------ | |
# __add__/__sub__ with DateOffsets and arrays of DateOffsets | |
def test_td64arr_add_sub_offset_index(self, names, box_with_array): | |
# GH#18849, GH#19744 | |
box = box_with_array | |
exname = get_expected_name(box, names) | |
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) | |
other = Index([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1]) | |
other = np.array(other) if box in [tm.to_array, pd.array] else other | |
expected = TimedeltaIndex( | |
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer", name=exname | |
) | |
expected_sub = TimedeltaIndex( | |
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer", name=exname | |
) | |
tdi = tm.box_expected(tdi, box) | |
expected = tm.box_expected(expected, box).astype(object, copy=False) | |
expected_sub = tm.box_expected(expected_sub, box).astype(object, copy=False) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res = tdi + other | |
tm.assert_equal(res, expected) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res2 = other + tdi | |
tm.assert_equal(res2, expected) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res_sub = tdi - other | |
tm.assert_equal(res_sub, expected_sub) | |
def test_td64arr_add_sub_offset_array(self, box_with_array): | |
# GH#18849, GH#18824 | |
box = box_with_array | |
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) | |
other = np.array([offsets.Hour(n=1), offsets.Minute(n=-2)]) | |
expected = TimedeltaIndex( | |
[tdi[n] + other[n] for n in range(len(tdi))], freq="infer" | |
) | |
expected_sub = TimedeltaIndex( | |
[tdi[n] - other[n] for n in range(len(tdi))], freq="infer" | |
) | |
tdi = tm.box_expected(tdi, box) | |
expected = tm.box_expected(expected, box).astype(object) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res = tdi + other | |
tm.assert_equal(res, expected) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res2 = other + tdi | |
tm.assert_equal(res2, expected) | |
expected_sub = tm.box_expected(expected_sub, box_with_array).astype(object) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res_sub = tdi - other | |
tm.assert_equal(res_sub, expected_sub) | |
def test_td64arr_with_offset_series(self, names, box_with_array): | |
# GH#18849 | |
box = box_with_array | |
box2 = Series if box in [Index, tm.to_array, pd.array] else box | |
exname = get_expected_name(box, names) | |
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"], name=names[0]) | |
other = Series([offsets.Hour(n=1), offsets.Minute(n=-2)], name=names[1]) | |
expected_add = Series( | |
[tdi[n] + other[n] for n in range(len(tdi))], name=exname, dtype=object | |
) | |
obj = tm.box_expected(tdi, box) | |
expected_add = tm.box_expected(expected_add, box2).astype(object) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res = obj + other | |
tm.assert_equal(res, expected_add) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res2 = other + obj | |
tm.assert_equal(res2, expected_add) | |
expected_sub = Series( | |
[tdi[n] - other[n] for n in range(len(tdi))], name=exname, dtype=object | |
) | |
expected_sub = tm.box_expected(expected_sub, box2).astype(object) | |
with tm.assert_produces_warning(PerformanceWarning): | |
res3 = obj - other | |
tm.assert_equal(res3, expected_sub) | |
def test_td64arr_addsub_anchored_offset_arraylike(self, obox, box_with_array): | |
# GH#18824 | |
tdi = TimedeltaIndex(["1 days 00:00:00", "3 days 04:00:00"]) | |
tdi = tm.box_expected(tdi, box_with_array) | |
anchored = obox([offsets.MonthEnd(), offsets.Day(n=2)]) | |
# addition/subtraction ops with anchored offsets should issue | |
# a PerformanceWarning and _then_ raise a TypeError. | |
msg = "has incorrect type|cannot add the type MonthEnd" | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(PerformanceWarning): | |
tdi + anchored | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(PerformanceWarning): | |
anchored + tdi | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(PerformanceWarning): | |
tdi - anchored | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(PerformanceWarning): | |
anchored - tdi | |
# ------------------------------------------------------------------ | |
# Unsorted | |
def test_td64arr_add_sub_object_array(self, box_with_array): | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
tdi = timedelta_range("1 day", periods=3, freq="D") | |
tdarr = tm.box_expected(tdi, box) | |
other = np.array([Timedelta(days=1), offsets.Day(2), Timestamp("2000-01-04")]) | |
with tm.assert_produces_warning(PerformanceWarning): | |
result = tdarr + other | |
expected = Index( | |
[Timedelta(days=2), Timedelta(days=4), Timestamp("2000-01-07")] | |
) | |
expected = tm.box_expected(expected, xbox).astype(object) | |
tm.assert_equal(result, expected) | |
msg = "unsupported operand type|cannot subtract a datelike" | |
with pytest.raises(TypeError, match=msg): | |
with tm.assert_produces_warning(PerformanceWarning): | |
tdarr - other | |
with tm.assert_produces_warning(PerformanceWarning): | |
result = other - tdarr | |
expected = Index([Timedelta(0), Timedelta(0), Timestamp("2000-01-01")]) | |
expected = tm.box_expected(expected, xbox).astype(object) | |
tm.assert_equal(result, expected) | |
class TestTimedeltaArraylikeMulDivOps: | |
# Tests for timedelta64[ns] | |
# __mul__, __rmul__, __div__, __rdiv__, __floordiv__, __rfloordiv__ | |
# ------------------------------------------------------------------ | |
# Multiplication | |
# organized with scalar others first, then array-like | |
def test_td64arr_mul_int(self, box_with_array): | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
idx = tm.box_expected(idx, box_with_array) | |
result = idx * 1 | |
tm.assert_equal(result, idx) | |
result = 1 * idx | |
tm.assert_equal(result, idx) | |
def test_td64arr_mul_tdlike_scalar_raises(self, two_hours, box_with_array): | |
rng = timedelta_range("1 days", "10 days", name="foo") | |
rng = tm.box_expected(rng, box_with_array) | |
msg = "|".join( | |
[ | |
"argument must be an integer", | |
"cannot use operands with types dtype", | |
"Cannot multiply with", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
rng * two_hours | |
def test_tdi_mul_int_array_zerodim(self, box_with_array): | |
rng5 = np.arange(5, dtype="int64") | |
idx = TimedeltaIndex(rng5) | |
expected = TimedeltaIndex(rng5 * 5) | |
idx = tm.box_expected(idx, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = idx * np.array(5, dtype="int64") | |
tm.assert_equal(result, expected) | |
def test_tdi_mul_int_array(self, box_with_array): | |
rng5 = np.arange(5, dtype="int64") | |
idx = TimedeltaIndex(rng5) | |
expected = TimedeltaIndex(rng5**2) | |
idx = tm.box_expected(idx, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = idx * rng5 | |
tm.assert_equal(result, expected) | |
def test_tdi_mul_int_series(self, box_with_array): | |
box = box_with_array | |
xbox = Series if box in [Index, tm.to_array, pd.array] else box | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
expected = TimedeltaIndex(np.arange(5, dtype="int64") ** 2) | |
idx = tm.box_expected(idx, box) | |
expected = tm.box_expected(expected, xbox) | |
result = idx * Series(np.arange(5, dtype="int64")) | |
tm.assert_equal(result, expected) | |
def test_tdi_mul_float_series(self, box_with_array): | |
box = box_with_array | |
xbox = Series if box in [Index, tm.to_array, pd.array] else box | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
idx = tm.box_expected(idx, box) | |
rng5f = np.arange(5, dtype="float64") | |
expected = TimedeltaIndex(rng5f * (rng5f + 1.0)) | |
expected = tm.box_expected(expected, xbox) | |
result = idx * Series(rng5f + 1.0) | |
tm.assert_equal(result, expected) | |
# TODO: Put Series/DataFrame in others? | |
def test_tdi_rmul_arraylike(self, other, box_with_array): | |
box = box_with_array | |
tdi = TimedeltaIndex(["1 Day"] * 10) | |
expected = timedelta_range("1 days", "10 days")._with_freq(None) | |
tdi = tm.box_expected(tdi, box) | |
xbox = get_upcast_box(tdi, other) | |
expected = tm.box_expected(expected, xbox) | |
result = other * tdi | |
tm.assert_equal(result, expected) | |
commute = tdi * other | |
tm.assert_equal(commute, expected) | |
# ------------------------------------------------------------------ | |
# __div__, __rdiv__ | |
def test_td64arr_div_nat_invalid(self, box_with_array): | |
# don't allow division by NaT (maybe could in the future) | |
rng = timedelta_range("1 days", "10 days", name="foo") | |
rng = tm.box_expected(rng, box_with_array) | |
with pytest.raises(TypeError, match="unsupported operand type"): | |
rng / NaT | |
with pytest.raises(TypeError, match="Cannot divide NaTType by"): | |
NaT / rng | |
dt64nat = np.datetime64("NaT", "ns") | |
msg = "|".join( | |
[ | |
# 'divide' on npdev as of 2021-12-18 | |
"ufunc '(true_divide|divide)' cannot use operands", | |
"cannot perform __r?truediv__", | |
"Cannot divide datetime64 by TimedeltaArray", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
rng / dt64nat | |
with pytest.raises(TypeError, match=msg): | |
dt64nat / rng | |
def test_td64arr_div_td64nat(self, box_with_array): | |
# GH#23829 | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
rng = timedelta_range("1 days", "10 days") | |
rng = tm.box_expected(rng, box) | |
other = np.timedelta64("NaT") | |
expected = np.array([np.nan] * 10) | |
expected = tm.box_expected(expected, xbox) | |
result = rng / other | |
tm.assert_equal(result, expected) | |
result = other / rng | |
tm.assert_equal(result, expected) | |
def test_td64arr_div_int(self, box_with_array): | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
idx = tm.box_expected(idx, box_with_array) | |
result = idx / 1 | |
tm.assert_equal(result, idx) | |
with pytest.raises(TypeError, match="Cannot divide"): | |
# GH#23829 | |
1 / idx | |
def test_td64arr_div_tdlike_scalar(self, two_hours, box_with_array): | |
# GH#20088, GH#22163 ensure DataFrame returns correct dtype | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
rng = timedelta_range("1 days", "10 days", name="foo") | |
expected = Index((np.arange(10) + 1) * 12, dtype=np.float64, name="foo") | |
rng = tm.box_expected(rng, box) | |
expected = tm.box_expected(expected, xbox) | |
result = rng / two_hours | |
tm.assert_equal(result, expected) | |
result = two_hours / rng | |
expected = 1 / expected | |
tm.assert_equal(result, expected) | |
def test_td64arr_div_td64_scalar(self, m, unit, box_with_array): | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
ser = Series([Timedelta(days=59)] * 3) | |
ser[2] = np.nan | |
flat = ser | |
ser = tm.box_expected(ser, box) | |
# op | |
expected = Series([x / np.timedelta64(m, unit) for x in flat]) | |
expected = tm.box_expected(expected, xbox) | |
result = ser / np.timedelta64(m, unit) | |
tm.assert_equal(result, expected) | |
# reverse op | |
expected = Series([Timedelta(np.timedelta64(m, unit)) / x for x in flat]) | |
expected = tm.box_expected(expected, xbox) | |
result = np.timedelta64(m, unit) / ser | |
tm.assert_equal(result, expected) | |
def test_td64arr_div_tdlike_scalar_with_nat(self, two_hours, box_with_array): | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
rng = TimedeltaIndex(["1 days", NaT, "2 days"], name="foo") | |
expected = Index([12, np.nan, 24], dtype=np.float64, name="foo") | |
rng = tm.box_expected(rng, box) | |
expected = tm.box_expected(expected, xbox) | |
result = rng / two_hours | |
tm.assert_equal(result, expected) | |
result = two_hours / rng | |
expected = 1 / expected | |
tm.assert_equal(result, expected) | |
def test_td64arr_div_td64_ndarray(self, box_with_array): | |
# GH#22631 | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
rng = TimedeltaIndex(["1 days", NaT, "2 days"]) | |
expected = Index([12, np.nan, 24], dtype=np.float64) | |
rng = tm.box_expected(rng, box) | |
expected = tm.box_expected(expected, xbox) | |
other = np.array([2, 4, 2], dtype="m8[h]") | |
result = rng / other | |
tm.assert_equal(result, expected) | |
result = rng / tm.box_expected(other, box) | |
tm.assert_equal(result, expected) | |
result = rng / other.astype(object) | |
tm.assert_equal(result, expected.astype(object)) | |
result = rng / list(other) | |
tm.assert_equal(result, expected) | |
# reversed op | |
expected = 1 / expected | |
result = other / rng | |
tm.assert_equal(result, expected) | |
result = tm.box_expected(other, box) / rng | |
tm.assert_equal(result, expected) | |
result = other.astype(object) / rng | |
tm.assert_equal(result, expected) | |
result = list(other) / rng | |
tm.assert_equal(result, expected) | |
def test_tdarr_div_length_mismatch(self, box_with_array): | |
rng = TimedeltaIndex(["1 days", NaT, "2 days"]) | |
mismatched = [1, 2, 3, 4] | |
rng = tm.box_expected(rng, box_with_array) | |
msg = "Cannot divide vectors|Unable to coerce to Series" | |
for obj in [mismatched, mismatched[:2]]: | |
# one shorter, one longer | |
for other in [obj, np.array(obj), Index(obj)]: | |
with pytest.raises(ValueError, match=msg): | |
rng / other | |
with pytest.raises(ValueError, match=msg): | |
other / rng | |
def test_td64_div_object_mixed_result(self, box_with_array): | |
# Case where we having a NaT in the result inseat of timedelta64("NaT") | |
# is misleading | |
orig = timedelta_range("1 Day", periods=3).insert(1, NaT) | |
tdi = tm.box_expected(orig, box_with_array, transpose=False) | |
other = np.array([orig[0], 1.5, 2.0, orig[2]], dtype=object) | |
other = tm.box_expected(other, box_with_array, transpose=False) | |
res = tdi / other | |
expected = Index([1.0, np.timedelta64("NaT", "ns"), orig[0], 1.5], dtype=object) | |
expected = tm.box_expected(expected, box_with_array, transpose=False) | |
if isinstance(expected, NumpyExtensionArray): | |
expected = expected.to_numpy() | |
tm.assert_equal(res, expected) | |
if box_with_array is DataFrame: | |
# We have a np.timedelta64(NaT), not pd.NaT | |
assert isinstance(res.iloc[1, 0], np.timedelta64) | |
res = tdi // other | |
expected = Index([1, np.timedelta64("NaT", "ns"), orig[0], 1], dtype=object) | |
expected = tm.box_expected(expected, box_with_array, transpose=False) | |
if isinstance(expected, NumpyExtensionArray): | |
expected = expected.to_numpy() | |
tm.assert_equal(res, expected) | |
if box_with_array is DataFrame: | |
# We have a np.timedelta64(NaT), not pd.NaT | |
assert isinstance(res.iloc[1, 0], np.timedelta64) | |
# ------------------------------------------------------------------ | |
# __floordiv__, __rfloordiv__ | |
def test_td64arr_floordiv_td64arr_with_nat( | |
self, box_with_array, using_array_manager | |
): | |
# GH#35529 | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
left = Series([1000, 222330, 30], dtype="timedelta64[ns]") | |
right = Series([1000, 222330, None], dtype="timedelta64[ns]") | |
left = tm.box_expected(left, box) | |
right = tm.box_expected(right, box) | |
expected = np.array([1.0, 1.0, np.nan], dtype=np.float64) | |
expected = tm.box_expected(expected, xbox) | |
if box is DataFrame and using_array_manager: | |
# INFO(ArrayManager) floordiv returns integer, and ArrayManager | |
# performs ops column-wise and thus preserves int64 dtype for | |
# columns without missing values | |
expected[[0, 1]] = expected[[0, 1]].astype("int64") | |
with tm.maybe_produces_warning( | |
RuntimeWarning, box is pd.array, check_stacklevel=False | |
): | |
result = left // right | |
tm.assert_equal(result, expected) | |
# case that goes through __rfloordiv__ with arraylike | |
with tm.maybe_produces_warning( | |
RuntimeWarning, box is pd.array, check_stacklevel=False | |
): | |
result = np.asarray(left) // right | |
tm.assert_equal(result, expected) | |
def test_td64arr_floordiv_tdscalar(self, box_with_array, scalar_td): | |
# GH#18831, GH#19125 | |
box = box_with_array | |
xbox = np.ndarray if box is pd.array else box | |
td = Timedelta("5m3s") # i.e. (scalar_td - 1sec) / 2 | |
td1 = Series([td, td, NaT], dtype="m8[ns]") | |
td1 = tm.box_expected(td1, box, transpose=False) | |
expected = Series([0, 0, np.nan]) | |
expected = tm.box_expected(expected, xbox, transpose=False) | |
result = td1 // scalar_td | |
tm.assert_equal(result, expected) | |
# Reversed op | |
expected = Series([2, 2, np.nan]) | |
expected = tm.box_expected(expected, xbox, transpose=False) | |
result = scalar_td // td1 | |
tm.assert_equal(result, expected) | |
# same thing buts let's be explicit about calling __rfloordiv__ | |
result = td1.__rfloordiv__(scalar_td) | |
tm.assert_equal(result, expected) | |
def test_td64arr_floordiv_int(self, box_with_array): | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
idx = tm.box_expected(idx, box_with_array) | |
result = idx // 1 | |
tm.assert_equal(result, idx) | |
pattern = "floor_divide cannot use operands|Cannot divide int by Timedelta*" | |
with pytest.raises(TypeError, match=pattern): | |
1 // idx | |
# ------------------------------------------------------------------ | |
# mod, divmod | |
# TODO: operations with timedelta-like arrays, numeric arrays, | |
# reversed ops | |
def test_td64arr_mod_tdscalar(self, box_with_array, three_days): | |
tdi = timedelta_range("1 Day", "9 days") | |
tdarr = tm.box_expected(tdi, box_with_array) | |
expected = TimedeltaIndex(["1 Day", "2 Days", "0 Days"] * 3) | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdarr % three_days | |
tm.assert_equal(result, expected) | |
warn = None | |
if box_with_array is DataFrame and isinstance(three_days, pd.DateOffset): | |
warn = PerformanceWarning | |
# TODO: making expected be object here a result of DataFrame.__divmod__ | |
# being defined in a naive way that does not dispatch to the underlying | |
# array's __divmod__ | |
expected = expected.astype(object) | |
with tm.assert_produces_warning(warn): | |
result = divmod(tdarr, three_days) | |
tm.assert_equal(result[1], expected) | |
tm.assert_equal(result[0], tdarr // three_days) | |
def test_td64arr_mod_int(self, box_with_array): | |
tdi = timedelta_range("1 ns", "10 ns", periods=10) | |
tdarr = tm.box_expected(tdi, box_with_array) | |
expected = TimedeltaIndex(["1 ns", "0 ns"] * 5) | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdarr % 2 | |
tm.assert_equal(result, expected) | |
msg = "Cannot divide int by" | |
with pytest.raises(TypeError, match=msg): | |
2 % tdarr | |
result = divmod(tdarr, 2) | |
tm.assert_equal(result[1], expected) | |
tm.assert_equal(result[0], tdarr // 2) | |
def test_td64arr_rmod_tdscalar(self, box_with_array, three_days): | |
tdi = timedelta_range("1 Day", "9 days") | |
tdarr = tm.box_expected(tdi, box_with_array) | |
expected = ["0 Days", "1 Day", "0 Days"] + ["3 Days"] * 6 | |
expected = TimedeltaIndex(expected) | |
expected = tm.box_expected(expected, box_with_array) | |
result = three_days % tdarr | |
tm.assert_equal(result, expected) | |
result = divmod(three_days, tdarr) | |
tm.assert_equal(result[1], expected) | |
tm.assert_equal(result[0], three_days // tdarr) | |
# ------------------------------------------------------------------ | |
# Operations with invalid others | |
def test_td64arr_mul_tdscalar_invalid(self, box_with_array, scalar_td): | |
td1 = Series([timedelta(minutes=5, seconds=3)] * 3) | |
td1.iloc[2] = np.nan | |
td1 = tm.box_expected(td1, box_with_array) | |
# check that we are getting a TypeError | |
# with 'operate' (from core/ops.py) for the ops that are not | |
# defined | |
pattern = "operate|unsupported|cannot|not supported" | |
with pytest.raises(TypeError, match=pattern): | |
td1 * scalar_td | |
with pytest.raises(TypeError, match=pattern): | |
scalar_td * td1 | |
def test_td64arr_mul_too_short_raises(self, box_with_array): | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
idx = tm.box_expected(idx, box_with_array) | |
msg = "|".join( | |
[ | |
"cannot use operands with types dtype", | |
"Cannot multiply with unequal lengths", | |
"Unable to coerce to Series", | |
] | |
) | |
with pytest.raises(TypeError, match=msg): | |
# length check before dtype check | |
idx * idx[:3] | |
with pytest.raises(ValueError, match=msg): | |
idx * np.array([1, 2]) | |
def test_td64arr_mul_td64arr_raises(self, box_with_array): | |
idx = TimedeltaIndex(np.arange(5, dtype="int64")) | |
idx = tm.box_expected(idx, box_with_array) | |
msg = "cannot use operands with types dtype" | |
with pytest.raises(TypeError, match=msg): | |
idx * idx | |
# ------------------------------------------------------------------ | |
# Operations with numeric others | |
def test_td64arr_mul_numeric_scalar(self, box_with_array, one): | |
# GH#4521 | |
# divide/multiply by integers | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
expected = Series(["-59 Days", "-59 Days", "NaT"], dtype="timedelta64[ns]") | |
tdser = tm.box_expected(tdser, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdser * (-one) | |
tm.assert_equal(result, expected) | |
result = (-one) * tdser | |
tm.assert_equal(result, expected) | |
expected = Series(["118 Days", "118 Days", "NaT"], dtype="timedelta64[ns]") | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdser * (2 * one) | |
tm.assert_equal(result, expected) | |
result = (2 * one) * tdser | |
tm.assert_equal(result, expected) | |
def test_td64arr_div_numeric_scalar(self, box_with_array, two): | |
# GH#4521 | |
# divide/multiply by integers | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]") | |
tdser = tm.box_expected(tdser, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdser / two | |
tm.assert_equal(result, expected) | |
with pytest.raises(TypeError, match="Cannot divide"): | |
two / tdser | |
def test_td64arr_floordiv_numeric_scalar(self, box_with_array, two): | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
expected = Series(["29.5D", "29.5D", "NaT"], dtype="timedelta64[ns]") | |
tdser = tm.box_expected(tdser, box_with_array) | |
expected = tm.box_expected(expected, box_with_array) | |
result = tdser // two | |
tm.assert_equal(result, expected) | |
with pytest.raises(TypeError, match="Cannot divide"): | |
two // tdser | |
def test_td64arr_rmul_numeric_array( | |
self, | |
box_with_array, | |
vector, | |
any_real_numpy_dtype, | |
): | |
# GH#4521 | |
# divide/multiply by integers | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
vector = vector.astype(any_real_numpy_dtype) | |
expected = Series(["1180 Days", "1770 Days", "NaT"], dtype="timedelta64[ns]") | |
tdser = tm.box_expected(tdser, box_with_array) | |
xbox = get_upcast_box(tdser, vector) | |
expected = tm.box_expected(expected, xbox) | |
result = tdser * vector | |
tm.assert_equal(result, expected) | |
result = vector * tdser | |
tm.assert_equal(result, expected) | |
def test_td64arr_div_numeric_array( | |
self, box_with_array, vector, any_real_numpy_dtype | |
): | |
# GH#4521 | |
# divide/multiply by integers | |
tdser = Series(["59 Days", "59 Days", "NaT"], dtype="m8[ns]") | |
vector = vector.astype(any_real_numpy_dtype) | |
expected = Series(["2.95D", "1D 23h 12m", "NaT"], dtype="timedelta64[ns]") | |
tdser = tm.box_expected(tdser, box_with_array) | |
xbox = get_upcast_box(tdser, vector) | |
expected = tm.box_expected(expected, xbox) | |
result = tdser / vector | |
tm.assert_equal(result, expected) | |
pattern = "|".join( | |
[ | |
"true_divide'? cannot use operands", | |
"cannot perform __div__", | |
"cannot perform __truediv__", | |
"unsupported operand", | |
"Cannot divide", | |
"ufunc 'divide' cannot use operands with types", | |
] | |
) | |
with pytest.raises(TypeError, match=pattern): | |
vector / tdser | |
result = tdser / vector.astype(object) | |
if box_with_array is DataFrame: | |
expected = [tdser.iloc[0, n] / vector[n] for n in range(len(vector))] | |
expected = tm.box_expected(expected, xbox).astype(object) | |
# We specifically expect timedelta64("NaT") here, not pd.NA | |
msg = "The 'downcast' keyword in fillna" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected[2] = expected[2].fillna( | |
np.timedelta64("NaT", "ns"), downcast=False | |
) | |
else: | |
expected = [tdser[n] / vector[n] for n in range(len(tdser))] | |
expected = [ | |
x if x is not NaT else np.timedelta64("NaT", "ns") for x in expected | |
] | |
if xbox is tm.to_array: | |
expected = tm.to_array(expected).astype(object) | |
else: | |
expected = xbox(expected, dtype=object) | |
tm.assert_equal(result, expected) | |
with pytest.raises(TypeError, match=pattern): | |
vector.astype(object) / tdser | |
def test_td64arr_mul_int_series(self, box_with_array, names): | |
# GH#19042 test for correct name attachment | |
box = box_with_array | |
exname = get_expected_name(box, names) | |
tdi = TimedeltaIndex( | |
["0days", "1day", "2days", "3days", "4days"], name=names[0] | |
) | |
# TODO: Should we be parametrizing over types for `ser` too? | |
ser = Series([0, 1, 2, 3, 4], dtype=np.int64, name=names[1]) | |
expected = Series( | |
["0days", "1day", "4days", "9days", "16days"], | |
dtype="timedelta64[ns]", | |
name=exname, | |
) | |
tdi = tm.box_expected(tdi, box) | |
xbox = get_upcast_box(tdi, ser) | |
expected = tm.box_expected(expected, xbox) | |
result = ser * tdi | |
tm.assert_equal(result, expected) | |
result = tdi * ser | |
tm.assert_equal(result, expected) | |
# TODO: Should we be parametrizing over types for `ser` too? | |
def test_float_series_rdiv_td64arr(self, box_with_array, names): | |
# GH#19042 test for correct name attachment | |
box = box_with_array | |
tdi = TimedeltaIndex( | |
["0days", "1day", "2days", "3days", "4days"], name=names[0] | |
) | |
ser = Series([1.5, 3, 4.5, 6, 7.5], dtype=np.float64, name=names[1]) | |
xname = names[2] if box not in [tm.to_array, pd.array] else names[1] | |
expected = Series( | |
[tdi[n] / ser[n] for n in range(len(ser))], | |
dtype="timedelta64[ns]", | |
name=xname, | |
) | |
tdi = tm.box_expected(tdi, box) | |
xbox = get_upcast_box(tdi, ser) | |
expected = tm.box_expected(expected, xbox) | |
result = ser.__rtruediv__(tdi) | |
if box is DataFrame: | |
assert result is NotImplemented | |
else: | |
tm.assert_equal(result, expected) | |
def test_td64arr_all_nat_div_object_dtype_numeric(self, box_with_array): | |
# GH#39750 make sure we infer the result as td64 | |
tdi = TimedeltaIndex([NaT, NaT]) | |
left = tm.box_expected(tdi, box_with_array) | |
right = np.array([2, 2.0], dtype=object) | |
tdnat = np.timedelta64("NaT", "ns") | |
expected = Index([tdnat] * 2, dtype=object) | |
if box_with_array is not Index: | |
expected = tm.box_expected(expected, box_with_array).astype(object) | |
if box_with_array in [Series, DataFrame]: | |
msg = "The 'downcast' keyword in fillna is deprecated" | |
with tm.assert_produces_warning(FutureWarning, match=msg): | |
expected = expected.fillna(tdnat, downcast=False) # GH#18463 | |
result = left / right | |
tm.assert_equal(result, expected) | |
result = left // right | |
tm.assert_equal(result, expected) | |
class TestTimedelta64ArrayLikeArithmetic: | |
# Arithmetic tests for timedelta64[ns] vectors fully parametrized over | |
# DataFrame/Series/TimedeltaIndex/TimedeltaArray. Ideally all arithmetic | |
# tests will eventually end up here. | |
def test_td64arr_pow_invalid(self, scalar_td, box_with_array): | |
td1 = Series([timedelta(minutes=5, seconds=3)] * 3) | |
td1.iloc[2] = np.nan | |
td1 = tm.box_expected(td1, box_with_array) | |
# check that we are getting a TypeError | |
# with 'operate' (from core/ops.py) for the ops that are not | |
# defined | |
pattern = "operate|unsupported|cannot|not supported" | |
with pytest.raises(TypeError, match=pattern): | |
scalar_td**td1 | |
with pytest.raises(TypeError, match=pattern): | |
td1**scalar_td | |
def test_add_timestamp_to_timedelta(): | |
# GH: 35897 | |
timestamp = Timestamp("2021-01-01") | |
result = timestamp + timedelta_range("0s", "1s", periods=31) | |
expected = DatetimeIndex( | |
[ | |
timestamp | |
+ ( | |
pd.to_timedelta("0.033333333s") * i | |
+ pd.to_timedelta("0.000000001s") * divmod(i, 3)[0] | |
) | |
for i in range(31) | |
] | |
) | |
tm.assert_index_equal(result, expected) | |