|
"""LU decomposition functions.""" |
|
|
|
from warnings import warn |
|
|
|
from numpy import asarray, asarray_chkfinite |
|
import numpy as np |
|
from itertools import product |
|
|
|
|
|
from ._misc import _datacopied, LinAlgWarning |
|
from .lapack import get_lapack_funcs |
|
from ._decomp_lu_cython import lu_dispatcher |
|
|
|
lapack_cast_dict = {x: ''.join([y for y in 'fdFD' if np.can_cast(x, y)]) |
|
for x in np.typecodes['All']} |
|
|
|
__all__ = ['lu', 'lu_solve', 'lu_factor'] |
|
|
|
|
|
def lu_factor(a, overwrite_a=False, check_finite=True): |
|
""" |
|
Compute pivoted LU decomposition of a matrix. |
|
|
|
The decomposition is:: |
|
|
|
A = P L U |
|
|
|
where P is a permutation matrix, L lower triangular with unit |
|
diagonal elements, and U upper triangular. |
|
|
|
Parameters |
|
---------- |
|
a : (M, N) array_like |
|
Matrix to decompose |
|
overwrite_a : bool, optional |
|
Whether to overwrite data in A (may increase performance) |
|
check_finite : bool, optional |
|
Whether to check that the input matrix contains only finite numbers. |
|
Disabling may give a performance gain, but may result in problems |
|
(crashes, non-termination) if the inputs do contain infinities or NaNs. |
|
|
|
Returns |
|
------- |
|
lu : (M, N) ndarray |
|
Matrix containing U in its upper triangle, and L in its lower triangle. |
|
The unit diagonal elements of L are not stored. |
|
piv : (K,) ndarray |
|
Pivot indices representing the permutation matrix P: |
|
row i of matrix was interchanged with row piv[i]. |
|
Of shape ``(K,)``, with ``K = min(M, N)``. |
|
|
|
See Also |
|
-------- |
|
lu : gives lu factorization in more user-friendly format |
|
lu_solve : solve an equation system using the LU factorization of a matrix |
|
|
|
Notes |
|
----- |
|
This is a wrapper to the ``*GETRF`` routines from LAPACK. Unlike |
|
:func:`lu`, it outputs the L and U factors into a single array |
|
and returns pivot indices instead of a permutation matrix. |
|
|
|
While the underlying ``*GETRF`` routines return 1-based pivot indices, the |
|
``piv`` array returned by ``lu_factor`` contains 0-based indices. |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.linalg import lu_factor |
|
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) |
|
>>> lu, piv = lu_factor(A) |
|
>>> piv |
|
array([2, 2, 3, 3], dtype=int32) |
|
|
|
Convert LAPACK's ``piv`` array to NumPy index and test the permutation |
|
|
|
>>> def pivot_to_permutation(piv): |
|
... perm = np.arange(len(piv)) |
|
... for i in range(len(piv)): |
|
... perm[i], perm[piv[i]] = perm[piv[i]], perm[i] |
|
... return perm |
|
... |
|
>>> p_inv = pivot_to_permutation(piv) |
|
>>> p_inv |
|
array([2, 0, 3, 1]) |
|
>>> L, U = np.tril(lu, k=-1) + np.eye(4), np.triu(lu) |
|
>>> np.allclose(A[p_inv] - L @ U, np.zeros((4, 4))) |
|
True |
|
|
|
The P matrix in P L U is defined by the inverse permutation and |
|
can be recovered using argsort: |
|
|
|
>>> p = np.argsort(p_inv) |
|
>>> p |
|
array([1, 3, 0, 2]) |
|
>>> np.allclose(A - L[p] @ U, np.zeros((4, 4))) |
|
True |
|
|
|
or alternatively: |
|
|
|
>>> P = np.eye(4)[p] |
|
>>> np.allclose(A - P @ L @ U, np.zeros((4, 4))) |
|
True |
|
""" |
|
if check_finite: |
|
a1 = asarray_chkfinite(a) |
|
else: |
|
a1 = asarray(a) |
|
|
|
|
|
if a1.size == 0: |
|
lu = np.empty_like(a1) |
|
piv = np.arange(0, dtype=np.int32) |
|
return lu, piv |
|
|
|
overwrite_a = overwrite_a or (_datacopied(a1, a)) |
|
|
|
getrf, = get_lapack_funcs(('getrf',), (a1,)) |
|
lu, piv, info = getrf(a1, overwrite_a=overwrite_a) |
|
if info < 0: |
|
raise ValueError('illegal value in %dth argument of ' |
|
'internal getrf (lu_factor)' % -info) |
|
if info > 0: |
|
warn("Diagonal number %d is exactly zero. Singular matrix." % info, |
|
LinAlgWarning, stacklevel=2) |
|
return lu, piv |
|
|
|
|
|
def lu_solve(lu_and_piv, b, trans=0, overwrite_b=False, check_finite=True): |
|
"""Solve an equation system, a x = b, given the LU factorization of a |
|
|
|
Parameters |
|
---------- |
|
(lu, piv) |
|
Factorization of the coefficient matrix a, as given by lu_factor. |
|
In particular piv are 0-indexed pivot indices. |
|
b : array |
|
Right-hand side |
|
trans : {0, 1, 2}, optional |
|
Type of system to solve: |
|
|
|
===== ========= |
|
trans system |
|
===== ========= |
|
0 a x = b |
|
1 a^T x = b |
|
2 a^H x = b |
|
===== ========= |
|
overwrite_b : bool, optional |
|
Whether to overwrite data in b (may increase performance) |
|
check_finite : bool, optional |
|
Whether to check that the input matrices contain only finite numbers. |
|
Disabling may give a performance gain, but may result in problems |
|
(crashes, non-termination) if the inputs do contain infinities or NaNs. |
|
|
|
Returns |
|
------- |
|
x : array |
|
Solution to the system |
|
|
|
See Also |
|
-------- |
|
lu_factor : LU factorize a matrix |
|
|
|
Examples |
|
-------- |
|
>>> import numpy as np |
|
>>> from scipy.linalg import lu_factor, lu_solve |
|
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) |
|
>>> b = np.array([1, 1, 1, 1]) |
|
>>> lu, piv = lu_factor(A) |
|
>>> x = lu_solve((lu, piv), b) |
|
>>> np.allclose(A @ x - b, np.zeros((4,))) |
|
True |
|
|
|
""" |
|
(lu, piv) = lu_and_piv |
|
if check_finite: |
|
b1 = asarray_chkfinite(b) |
|
else: |
|
b1 = asarray(b) |
|
|
|
overwrite_b = overwrite_b or _datacopied(b1, b) |
|
|
|
if lu.shape[0] != b1.shape[0]: |
|
raise ValueError(f"Shapes of lu {lu.shape} and b {b1.shape} are incompatible") |
|
|
|
|
|
if b1.size == 0: |
|
m = lu_solve((np.eye(2, dtype=lu.dtype), [0, 1]), np.ones(2, dtype=b.dtype)) |
|
return np.empty_like(b1, dtype=m.dtype) |
|
|
|
getrs, = get_lapack_funcs(('getrs',), (lu, b1)) |
|
x, info = getrs(lu, piv, b1, trans=trans, overwrite_b=overwrite_b) |
|
if info == 0: |
|
return x |
|
raise ValueError('illegal value in %dth argument of internal gesv|posv' |
|
% -info) |
|
|
|
|
|
def lu(a, permute_l=False, overwrite_a=False, check_finite=True, |
|
p_indices=False): |
|
""" |
|
Compute LU decomposition of a matrix with partial pivoting. |
|
|
|
The decomposition satisfies:: |
|
|
|
A = P @ L @ U |
|
|
|
where ``P`` is a permutation matrix, ``L`` lower triangular with unit |
|
diagonal elements, and ``U`` upper triangular. If `permute_l` is set to |
|
``True`` then ``L`` is returned already permuted and hence satisfying |
|
``A = L @ U``. |
|
|
|
Parameters |
|
---------- |
|
a : (M, N) array_like |
|
Array to decompose |
|
permute_l : bool, optional |
|
Perform the multiplication P*L (Default: do not permute) |
|
overwrite_a : bool, optional |
|
Whether to overwrite data in a (may improve performance) |
|
check_finite : bool, optional |
|
Whether to check that the input matrix contains only finite numbers. |
|
Disabling may give a performance gain, but may result in problems |
|
(crashes, non-termination) if the inputs do contain infinities or NaNs. |
|
p_indices : bool, optional |
|
If ``True`` the permutation information is returned as row indices. |
|
The default is ``False`` for backwards-compatibility reasons. |
|
|
|
Returns |
|
------- |
|
**(If `permute_l` is ``False``)** |
|
|
|
p : (..., M, M) ndarray |
|
Permutation arrays or vectors depending on `p_indices` |
|
l : (..., M, K) ndarray |
|
Lower triangular or trapezoidal array with unit diagonal. |
|
``K = min(M, N)`` |
|
u : (..., K, N) ndarray |
|
Upper triangular or trapezoidal array |
|
|
|
**(If `permute_l` is ``True``)** |
|
|
|
pl : (..., M, K) ndarray |
|
Permuted L matrix. |
|
``K = min(M, N)`` |
|
u : (..., K, N) ndarray |
|
Upper triangular or trapezoidal array |
|
|
|
Notes |
|
----- |
|
Permutation matrices are costly since they are nothing but row reorder of |
|
``L`` and hence indices are strongly recommended to be used instead if the |
|
permutation is required. The relation in the 2D case then becomes simply |
|
``A = L[P, :] @ U``. In higher dimensions, it is better to use `permute_l` |
|
to avoid complicated indexing tricks. |
|
|
|
In 2D case, if one has the indices however, for some reason, the |
|
permutation matrix is still needed then it can be constructed by |
|
``np.eye(M)[P, :]``. |
|
|
|
Examples |
|
-------- |
|
|
|
>>> import numpy as np |
|
>>> from scipy.linalg import lu |
|
>>> A = np.array([[2, 5, 8, 7], [5, 2, 2, 8], [7, 5, 6, 6], [5, 4, 4, 8]]) |
|
>>> p, l, u = lu(A) |
|
>>> np.allclose(A, p @ l @ u) |
|
True |
|
>>> p # Permutation matrix |
|
array([[0., 1., 0., 0.], # Row index 1 |
|
[0., 0., 0., 1.], # Row index 3 |
|
[1., 0., 0., 0.], # Row index 0 |
|
[0., 0., 1., 0.]]) # Row index 2 |
|
>>> p, _, _ = lu(A, p_indices=True) |
|
>>> p |
|
array([1, 3, 0, 2], dtype=int32) # as given by row indices above |
|
>>> np.allclose(A, l[p, :] @ u) |
|
True |
|
|
|
We can also use nd-arrays, for example, a demonstration with 4D array: |
|
|
|
>>> rng = np.random.default_rng() |
|
>>> A = rng.uniform(low=-4, high=4, size=[3, 2, 4, 8]) |
|
>>> p, l, u = lu(A) |
|
>>> p.shape, l.shape, u.shape |
|
((3, 2, 4, 4), (3, 2, 4, 4), (3, 2, 4, 8)) |
|
>>> np.allclose(A, p @ l @ u) |
|
True |
|
>>> PL, U = lu(A, permute_l=True) |
|
>>> np.allclose(A, PL @ U) |
|
True |
|
|
|
""" |
|
a1 = np.asarray_chkfinite(a) if check_finite else np.asarray(a) |
|
if a1.ndim < 2: |
|
raise ValueError('The input array must be at least two-dimensional.') |
|
|
|
|
|
if a1.dtype.char not in 'fdFD': |
|
dtype_char = lapack_cast_dict[a1.dtype.char] |
|
if not dtype_char: |
|
raise TypeError(f'The dtype {a1.dtype} cannot be cast ' |
|
'to float(32, 64) or complex(64, 128).') |
|
|
|
a1 = a1.astype(dtype_char[0]) |
|
overwrite_a = True |
|
|
|
*nd, m, n = a1.shape |
|
k = min(m, n) |
|
real_dchar = 'f' if a1.dtype.char in 'fF' else 'd' |
|
|
|
|
|
if min(*a1.shape) == 0: |
|
if permute_l: |
|
PL = np.empty(shape=[*nd, m, k], dtype=a1.dtype) |
|
U = np.empty(shape=[*nd, k, n], dtype=a1.dtype) |
|
return PL, U |
|
else: |
|
P = (np.empty([*nd, 0], dtype=np.int32) if p_indices else |
|
np.empty([*nd, 0, 0], dtype=real_dchar)) |
|
L = np.empty(shape=[*nd, m, k], dtype=a1.dtype) |
|
U = np.empty(shape=[*nd, k, n], dtype=a1.dtype) |
|
return P, L, U |
|
|
|
|
|
if a1.shape[-2:] == (1, 1): |
|
if permute_l: |
|
return np.ones_like(a1), (a1 if overwrite_a else a1.copy()) |
|
else: |
|
P = (np.zeros(shape=[*nd, m], dtype=int) if p_indices |
|
else np.ones_like(a1)) |
|
return P, np.ones_like(a1), (a1 if overwrite_a else a1.copy()) |
|
|
|
|
|
if not _datacopied(a1, a): |
|
if not overwrite_a: |
|
|
|
a1 = a1.copy(order='C') |
|
|
|
|
|
|
|
|
|
|
|
|
|
if not (a1.flags['C_CONTIGUOUS'] and a1.flags['WRITEABLE']): |
|
a1 = a1.copy(order='C') |
|
|
|
if not nd: |
|
|
|
p = np.empty(m, dtype=np.int32) |
|
u = np.zeros([k, k], dtype=a1.dtype) |
|
lu_dispatcher(a1, u, p, permute_l) |
|
P, L, U = (p, a1, u) if m > n else (p, u, a1) |
|
|
|
else: |
|
|
|
|
|
P = np.empty([*nd, m], dtype=np.int32) |
|
|
|
if m > n: |
|
U = np.zeros([*nd, k, k], dtype=a1.dtype) |
|
for ind in product(*[range(x) for x in a1.shape[:-2]]): |
|
lu_dispatcher(a1[ind], U[ind], P[ind], permute_l) |
|
L = a1 |
|
|
|
else: |
|
L = np.zeros([*nd, k, k], dtype=a1.dtype) |
|
for ind in product(*[range(x) for x in a1.shape[:-2]]): |
|
lu_dispatcher(a1[ind], L[ind], P[ind], permute_l) |
|
U = a1 |
|
|
|
|
|
|
|
if (not p_indices) and (not permute_l): |
|
if nd: |
|
Pa = np.zeros([*nd, m, m], dtype=real_dchar) |
|
|
|
nd_ix = np.ix_(*([np.arange(x) for x in nd]+[np.arange(m)])) |
|
Pa[(*nd_ix, P)] = 1 |
|
P = Pa |
|
else: |
|
Pa = np.zeros([m, m], dtype=real_dchar) |
|
Pa[np.arange(m), P] = 1 |
|
P = Pa |
|
|
|
return (L, U) if permute_l else (P, L, U) |
|
|